D-A284 054 -
A RN UHEES - @

FINAL TECHNICAL REPORT

ARPA Grant # MDA972-92-J-1031

(Undergraduate Curriculum & Course Development
in Software Engineering and the Use of Ada)

"Ada in Introductory Computer Science Courses”

SUBMITTED BY: DTIC

ELECTE
Sandra Honda Adams AUG 31 1994
Computer Science

Sacred Heart University
5151 Park Avenue
Fairfield, Connecticut 06432-1000 a
— CLEARED

FOR OPEN PUBLICATION
T0:

1904 21

Defense Technical Information Center

Attn: DTIC-DFAC I

Cameron Station
Alexandria, VA 22304-6145

el MATION
Pk L SDPA\

|

for public relacse and sale; its

This document Lcs Deed approved ‘
distribution 1s unii-nited

SR
94-28146
URAWRAEN €4 g 30 \13

Best
Available
Copy

TABLE OF CONTENTS

Introductionttt it i e e 1
SuUMMaAry . . . o e e e 3
Time Tableottt 4
Budget P e e e e 6
CSOBO NOtES . . v v v v vttt ittt i ittt e i it 7
CSOBT NOteS . ..ot i ittt i ittt ettt it aann 10
Appendices
Bibliography i i e e A
Accesion For \ ‘ollography
NTIS CRA&I N Syllabus e B
DTIC TAB o -
Unannounced 0 Handouts . . . oo oo v et e e c
Justifcation = | Hamdouts..............een
sy Qe T PrOJECES - . . o oot vee i D
Distdbution [Exams E
Availability Codes '
, Avail and|or Articles0ttt F
Dist Special

Introduction

Introduction

Sacred Heart University Computer Science Department which is a part of
the Faculty of Science, Math, and Compuier Science, has offered a computer
science major since fall 1983. This program offers two options to service both
the business and scientific communities. The curriculum is continually updated
following American Computing Machinery (ACM) curriculum guidelines. There
are currently 150 computer science majors at the University. Graduates of our
program are employed ir. h= <<, financial firms, software development firms,
utility companies, local a. : .a.:. government, manufacturing firms, and also
three local defense contractors, ' T/Sikcrsky Aircraft, UT/Norden Systems, and
Avco Lycoming Industries.

Sacred Heart University’'s current computer science curriculum has been
modified in the 1992-1993 school year after receiving an ARPA Grant (Advanced
Research Projects Agency) for "Undergraduate Cur-iculum and Course
Development in Software Engineering and the Use of Adz, "BAA #97-18.
Category #1. The grant entitled, "Ada in Introductory Computer Science
Course", allowed for the modification of both introductory proaramming courses
to use Ada as the language of choice, since it is a good software engineering
tool that can best support many of the goals and principles of software
engineering. The two introductory computer science courses, CS050
(Introduction to Computer Science) and CS051 (Data Structures) were developed
to include Ada and software engineering principles. The developed courses
allows the student to apply a methodology using Ada and some principles of
software engineering to build software that is maintainable, efficient and
understandable at an introductory level.

The courses utilized features of Ada to support the development of high-
quality, reliable, reusable, and portable software. Learning to conform to good
programming practices using Ada provided very clear ideas of software
engineering principles and goals without formally teaching software engineering
concepts. The students will formally learn software engineering in their junior
year. Basic software engineering principles can be indirectly learned during the
first two programming courses.

The students were provided with a course syllabus, program examples,
handouts, programming assignments and articles to read. The students were
introduced to programming with ease, and seemed to enjoy the classes. They
found the Ada language simple to understand and use. Most of all, they found
Ada to be highly readable and clear. Most of my efforts went into developing
the first course. Covering the right material in the right order is an art. The
transition into programming should be a painless one. Both scientific and

1

information ootion students enroll in both courses. It was important to make the
program problems in the first course simple while students dealt with their first
encounter with Ada, the editor and unix. Initial assignments were not difficult.
Assignments became increasingly open-ended to give the better students an
opportunity for creativity. By giving the students handouts and examples to
follow, learning was made very simple. The text was not followed sequentially,
but used as a supplimental resource. Students were fore warned of this and
were told to follow the lecture order in their text. All material on the syllabus
was covered in class and supplimented with handouts. The CS051 course
followed the text much more carefully. It did not require as many handouts.

Summary

Summary

The grant received from ARPA provided the opportunity to develop
new courses material for CS050 and CS051, using Ada and software
engineering principles. It made work easier for the project director to
develop Ada software examples at home with the purchase of a Meridian
Ada PC Compiler. It provided wonderful opportunities to meet other
educators and defense personnel promoting the Ada language. It
provided opportunities to participate in several Ada and Software
Engineering related conferences and to arrange for one to be held on our
campus. I have met people from ASEET, strong Ada supporters,
educators who have adopted or are about to adopt Ada, and defense
contractors in our local area. And best of all, it has allowed me to
discover a language that | personally like, to use in the introductory
programming courses. [t has been a wonderful opportunity and
experience that | have thoroughly enjoyed and appreciated!

Time Table

Time Table

Summer 1992

Prepare for CSO50 (Introduction to Programming)
- Review Textbooks for course
- Research Articles for use in class
- Decide on course content
- Prepare handouts

Fall 1992

Implement CSO50 (Introduction to
Programming)- 2 Sections
Prepare for CS051 (Data Structures)
- Research Articles for use in class
- Decide on course content
- Prepare handouts
Participate in REUSE EDUCATION WORKSHOP hosted
by West Virginia Univ, CARDS, ASEET, & AdaNET
Working Group 1:
"Software Reuse in Computer Science Courses"”

Spring 1993

Evaluate Course, Revise Course

Implement CS051 (Data Structures)
- 1 Section

Implement CS050 (Introduction to Programming)
- 2 Sections

Summer 1993

Evaluate Courses
Make Revisions

Fall 1993

Implement CS050

-2 Sections (Introduction to Programming)
Implement CS051

-1 Section (Data Structures)
Evaluate and make Revisions

Spring 1994

implement CS050
1 Section (Introduction of Programming)

implement CS051
1 Section (Data Structures)

Attended Eighth Annual ASEET Symposium
Albuquerque, New Mexico, Jan. 10-13, 1994
Attended Introduction to Ada9X classes

by Capt. David Cook & Eugene Bingue

Present Paper, at Twelfth Annual National Conference
on Ada Technology entitled,
"Ada, a Software Engineering Tool, in
Introductory Computer Science Programming
Courses at Sacred Heart University:
Mutual Benefits" Williamsburg, Va Mar. 21-24
Attended Ada9X tutorial by Normam Cohen

Summer 1 994

Complete report for grant.
Planning to host 3 days hands-on Ada9X
ASEET 1994 Summer Workshop on campus
for educators and those interested in Ada9X
"The New World of Ada9X", August 3-5, 1994
® Introduction to Ada9X
® Object Oriented Design in Ada9X
® Real-time in Ada9Xx
Coordinator - Catherine McDonald IDA/ASEET

n

—

Budget

BUDGET

Personnel

Project Director, Sandra Honda Adams;
Summer 1992: 2 months X $3,000/mo

Non-Persor...al

Meridien Ada Compiler fc. use on
personal computer (for use by Project
Dire ~tor on hame computer)

Duplicating Costs for Educator Packets
100 Packets @ $5/Packet =

Postage for Dissemination of Information

Total Direct Costs:

INDIRECT COSTS (@ 10% of TDC):

TOTAL PROJECT COSTS:

$6,000
$ 333
$ 500
$ 300
$ 7133
$ 713
$ 7846

CS050 Notes

SACREDHEART
UNIVERSITY

"Notes for CS050
Introduction to Structured Programming

Textbook: Ada Problem Solving and Program Design
by Michael B. Feldman and Elliot B. Koffman
Course Objective: To develop expertise in wiiting structured
programs using ADA and software engineering
concepts.

(Students should read text covering material discussed in class . Specific chapters
and sections will be given during each class.)

Week 1 & Week 2 =
® Introduce the students to Ada through a brief lecture about the history of
Ada. Mention the software crisis and the need for software engineering.
® Explain Handout #1 Example of an Ada Program violet.ada
® Give a general explanation of the parts of a program (refer ot handout)
® With and use Context Clause
® Header
® Declaration
® Executable Body
® Homework Assignment #1 - First Program Assignment
® Explain Instructions on Dec 5500 (refer to handout)
® Logging on, Password Change
@ Unix , Vi Editor, Compilation, Linking, and Execution
® Printing program and output
@ Review Ultrix Mail Facility (refer to handout)
® Review of Ciass Procedures and Class Package (see handouts)
Student projects are collected in a class procedure and housed in a package.
Both are mailed electronically to each student for extraction and compilation.
This first introduction to subprogram procedures and packages will be an
easy one for students to understand.
® Explain Software Engineering Concepts (Reuse, Abstraction, Information
Hiding) as seen in the development of the class project.
® Review Program Development
® Problem Definition
® Specification of Domain and 1/0
® Algorithm Development - (refer to handout)

7

$151 PARK AVENUE. FAIRFIELD, CONNECTICUT 06432-1000 (203) 371-7999 FAX (203) 365-7609

(flowchart/pseudo code/top down design)
® Flowchart Definition; Examples (refer to handout)
® Coding, Testing, Documentation
® Homework Assignment #1b (Flowcharting problems)

Week 3 & 4
® Handout #2 - Program development:
@ Declaration Section (see handout)
@ Data Types
@ Variables
e Constants
® subtypes
® generic instantiation
Puts, Gets, Put_line; New_line 1/0 from Package Text_io
® Ada Executable Statements (see handout)
® Assignment
® Numeric, Logical, and Relational Operators
@ Hierarchy of Operators
e Control Statements (if, loop, while, for, case)
® Review of flowcharting payrol! problem exampie with and without loop
Coding in Ada - (flowcharting problems)(3 sets in handout)
® without loop
® with while loop
® with loop-end loop
® Assignment #2 - Coding flowcharting Problems in Ada
® Ada Examples from flowcharting problem set
® Using proper documentation and code formatting
¢ Importance of naming ldentifiers properly
® Importance of code structure readability

Week 5 .

® Handout #3 - String Variable and Constant declaration

® Enumeration type declaration

® Control structure - Case Statement

o If, If-Elsif, Case

® Homework Assignment #3 - Develop example programs using
@ all 3 control structures and enumeration data types
® and reading

® Exam |

Week 6
¢ Handout #4 - Logical Expressions
® File Processing Subprogams from Text_io
® open, create, close, get, put, end_of_file
® Example on file processing
® Homework Assignment #4 - Code 2 out of 3 Problems

Week 7 & 8
e Handout #5 - Subprogram Development
® Procedures
® Functions
® Parameter Passing Modes (in, out, in out)
e For Statement - Single and nested for loops
e Examples of Subprograms and For statements (Truth Table)
® MHomework Assignment #5 - Change Last Assignment
to utilize Subprograms. Create single and nested for loops.

Week 9
e Exam il
® Class participation on using files & developing subprograms
® Exception Handling
o Handout #6 - Examples of Exceptions
® Homework Assignment #6 - Use exceptions

Week 10
® One and Multi-Dimensional Arrays
® Array type declaration
@ Name notation, Positional Notation
e Handout #7 - Examples of array declaration and use
® Homework Assignment #7 - Write program using 1 D arrays

Week 11
® Separate Compilations - Procedure and Function
® Multi-dimensional arrays
® Handout #8 - Examples of Multi-dimensional arrays and
separate Compilations
® Homework Assignment #8 - Write program using 2-D arrays

Final Exam

CSO051 Notes

SACREDHEART
UNIVERSITY

Notes for CS051

Data Structures
3 Credits

Textbook: Data Structures with Abstract Data Types and Ada
by Daniel F. Stubbs and Neil W. Webre

Course Objective: To introduce the students to the basic classical data structures of
' computer science, emphasizing skills in design, analysis and
software engineering, through the use of packages, generics, and

private types.

Week 1 & Week 2 Chapter
® Introduction to data structures 2.1
® Handout #1 - Sorting, Subprograms, Modular Design, Menus
® Arrays 2.2
® Dynamic and Unconstrained Arrays 2.3

® Homework Assignment #1 (Arrays)

Week 3 & 4
® Records
¢ Pointers (Dynamic Memory Allocation
@ Abstract Data Types (ADT)
@ Handout #2 - Examples of Stacks
® Stack package (ADT)
® Generic Stack Package
® Homework Assignment #2 - Stacks
® Exam |

S 2hb
Wh OOBN

-—t a=h

Week 5 & 6
® Handout #3 - FIFO Queues 3.3
® Program Examples of Queues
® Scheduling I/0 Requests on a Magnetic Disk 3.5
® Queue package (ADT)
® Generic Queue Package
® Homework Assignment #3 - Parking Garage Problem

10

$151 PARK AVENUE, FAIRFIELD, CONNECTICUT 06432-1000 (203) 371-7999 FAX (203) 365-7609

Week 7 & 8

o Handout #4 - Program Examples of Linked Lists

e Linked List Abstraction

@ Double Linked and Circular Lists

@ Ordered Lists
@ Rings

4.3
4.4
4.5
4.6

® Linked Lists (ADT)

® Generic Linked Lists (ADT)

e Homework Assignment #4 - Linked List Problem
e Exam ll

Week 9 - 11
@ Handout #5 - Examples of Trees
® Elements and structure of trees
® Binary Trees
® Binary Tree Search
® Introduction to Recursion
® Tree Traversal and Display
® Homework Assignment #5 - Tree Problem

Final Exam

11

agnGaao
obbwN

Appendices

Appendix A

Bibliography

Bibliography of
Text Books

Bell/Morrey/Pugh, Software Engineering, A Programming Approach,
Prentice Hall, 1992, NJ

Booch, Software Engineering With Ada, Second Edition, Benjamin
Cummings, 1986, CA

Caverly/Goldstein, m_gdsmm_Jg__da__A_lQn_Qgﬂn_AnD_oas__m
Programmers, Brooks Cole, 1986, CA

Cohen, Ad_a_As_n_S_e_cmd_ngusgsJ McGraw Hill, 1986, NY
Cooling/N. Cooling/J. Cooling, Introduction to Ada, Chapman & Hall,

1993, London

Dale/Weems/McCormick, Programming and Problem Solving with Ada, D.
C. Heath and Company, 1994, MA

Feldman/Koffman, Ada Problem Solving and Program Design, Addison-
Wesley, 1992, MA

Gehani, Ada: An Advanced Introduction, Second Edition, Prentice Hall,
1989, NY —

Ghezzi/Jazayeri/Mandrioli, m f ineerin
Prentice Hall, 1991, NJ

Gilpin, Ada A Guided Tour & Tutorial, Prentice :Hall, 1986, NJ

Hillam, Introduction to Abstract Data Types Using Ada, Prentice Hall,
1994, NJ

Nielsen, Object-Oriented Design with Ada, Bantam Books, 1992, NY

Appendix A1

Olsen/Whitehill, Ada for Programmers, Reston, 1983, VA

Savitch/Petersen, Ada, An Introduction to the Art and Science of
Programming, 1992, CA

Shumate, Understanding Ada with Abstract Data Types, Wiley, 1989, NY
Texel, Introductory Ada: Packages for Programming, Wadsworth, 1986,
CA

Viiet, Software Engineering Principles and Practice, Wiley, 1993, NY
Volper/Katz, Introduction To Programming Using Ada, Prentice Hall,
1990, NJ

Watt/Wichmann/Findclay, Ada lan and Methodol Prentice Hall,
1987, NJ

Weiss, Data Structures and _Algorithm Analysis in Ada,

Benjamin/Cummings, 1993, CA

Bibliography of Others
Annual ASEET Symposium (4th), Tutorials, June, 1989

Riehle, "Ada: A Software Engineering Tool", Programmer’s Journal, Vol.
6.5, p. 68-79, 1988

Software Productivity Consortium, Inc, "Ada Quality and Style for
Professional Progammers"”, SPC-91061-CMC Ver 02.01.01, Dec. 1992

USAF, Technical Training Manual On Fundamentals of Ada Programming/
Software Engineering, June, 1989
USAF,

Software Engmgung, December 1987

Appendix A2

Appendix B

Syllabus

SACREDHEART
UNIVERSITY
Syllabus
CS050
Introduction to Structured Programming
3 Credits
Textbook: Ada Problem Solving and Program Design
by Michael B. Feldman and Elliot B. Koffman
Course Objective: To develop expertise in writing structured
programs using ADA and software engineering
concepts.

(Students should read text covering material discussed in class . Specific chapters
and sections will be given during each class.)

Week 1 & 2
History of Ada and Software Engineering
Example of an Ada Program
Parts of a Program (General explanation as related to handout)
@ With Context Clause
® Header
® Declaration
~ ® Executable Body
-instructions for the Dec 5500
® Logging on, Password Change
® Ultrix, Vi Editor, Compilation, Linking, and Execution
® Printing program and output
Homework Assignment #1
Review of Class Procedure and Class Package
Software Engineering Concepts - Reuse, Abstraction, Information Hiding
Problem Development
® Problem Definition
® Specification of Domain and I/0
® Algorithm Development
(flowchart/pseudo code/top down design)
® Flowchart Definition ; Examples
® Coding, Testing, Documentation
Homework Assignment #1b (Flowcharting problems)

$151 PARK AVENUE. FAIRFIELD. CONNECTICUT 06432-1000 (203) 371-799% FAX (203) 345-7609

Week 3 & 4

Ultrix Mail Facility
Program Development
Procedure sub program and packages
Declaration Types
® Data Types
® Variables
® Constants
® subtypes
Ada Executable Statements
® Assignment
® Numeric, Logical, and Relational Operators
® Hierarchy of Operators
® Control Statements (if, loop, while, for, case)
1/0 from Package Text_io
® Puts, Gets, Put_line; New_line

 Review of flowcharting problem assignments

Week 5

Week 6

Coding in Ada - (flowcharting problems 3 sets)
® Using proper documentation and code formatting
® Importance of naming identifiers
@ Importance of code structure readability
Example; of Ada problems - 3 sets
® Wthout loop
® With while loop
® With loop end-loop
Assignment #2 - Code Flowcharting Problems in Ada
® Using proper documentation and code formatting
® Importance of naming identifiers
® Importance of code structure readability

® String Variable and constant declaration
® Enumeration type declaration

Homework Assignment #3 - Develop example programs using

all 3 control structures and enumeration data types
ano reading
Exam |

® Logical Expressions
® File Processing Subprogams from Text_io
(open, create, close, get, put, end_of_file)
® Examples of File processing
Homework Assignment #4 - Code 2 out of 3 Problems

Week 7 & 8

Week 8

P———_————"l

Subprogram Development
® Procedures
® Functions
® Parameter Passing Modes (in, out, in out)
For Statement - Single and nested loops
Examples of Subprograms and For statements(Truth Table)
Homework Assignment #5 - Change Last Assignment
to utilize Subprograms. Also write program(2) using files,
subprograms, enumeration types and for and case statements.

- Exam

Class participation on using files & developing subprograms
Exceptions
Homework Assignment #6 - Use exceptions

Week 10 & 11

Week 12

Final Exam

1 Dimensional Arrays
Homework Assignment #7 - Write program using 1 D arrays

Multi-dimensional arrays
Separate Compitlations
Homework Assignment #8 - Write program using 2-D arrays

SACREDHEART
UNIVERSITY

Syllabus
CS051

Data Structures
3 Credits

Textbook: Data Structures with Abstract Data Types and Ada
by Daniel F. Stubbs and Neil W. Webre

Course Objective: To introduce the students to the basic classical data structures of
computer science, emphasizing skills in design, analysis and
software engineering, through the use of packages, generics, and
private types. T

Week 1 & Week 2 Chapter
@ |ntroduction to data structures 2.1
e Handout #1 - Sorting, Subprograms, Modular Design, Menus
® Arrays 2.2
@ Dynamic and Unconstrained Arrays 2.3

® Homework Assignment #1 (Arrays)

Week 3 & 4
® Records
e Pointers (Dynamic Memory Allocation
® Abstract Data Types (ADT)
e Handout #2 - Examples of Stacks
® Stack package (ADT)
® Generic Stack Package
® Homework Assignment #2 - Stacks
® Exam |

- N
wh osN

-ad b

Week 5 & 6
¢ Handout #3 - FIFO Queues 33
® Program Examples of Queues
e Scheduling I/o Requests on a Magnetic Disk 35
¢ Queue package (ADT)
® Generic Queue Package
® Homework Assignment #3 - Parking Garage Problem

5351 PARK AVENUE, FAIRFIELD, CONNECTICUT 06432-1000 (203} 371-799% FAX (203) 3637609

Week 7 & 8
e Handout #4 - Program Examples of Linked Lists
@ Linked List Abstraction
e Double Linked and Circular Lists
® Ordered Lists
® Rings .
® Linked Lists (ADT)
® Generic Linked Lists (ADT)
® Homework Assignment #4 - Linked List Problem
® Exam Il

Week 9 - 11
® Handout #5 - Examples of Trees
® Elements and structure of trees
® Binary Trees
@ Binary Tree Search
® Introduction to Recursion
® Tree Traversal and Display
® Homework Assignment #5 - Tree Problem

Final Exam

4.3
4.4
4.5
4.6

oo oo
ObhpbwN

Appendix C

CS050
Handouts

r
SACREDHEART
UNMNERSITY
Syllabus
CS050
Introduction to Structured Programming
3 Credits
Textbook: Ada Problem Solving and Program Design
by Michael B. Feldman and Elliot B. Koffman
Course Objective: To develop expertise in writing structured
programs using ADA and software engineering
concepts.

(Students should read text covering material discussed in class . Specific chapters
and sections will be given during each class-)

Week 1 & 2
History of Ada and Software Engineering
Example of an Ada Program
Parts of a Program (General explanation as related to handout)
® Context Clause
® Header
® Declaration
® Executable Body
Instructions for the Dec 5500
— ® Logging on, Password Change
e Ultrix, Vi Editor, Compilation, Linking, and Execution
® Printing program and output
@ Ultrix Mail Facility
Homework Assignment #1
Review of Class Procedure and Class Package
Software Engineering Concepts - Reuse, Abstraction, Information Hiding
Problem Development
® Problem Definition
e Specification of Domain and 1/O
® Algorithm Development
(flowchart/pseudo code/top down design)
® Flowchart Definition ; Examples
® Coding, Testing, Documentation
Homework Assignment #1b (Flowcharting problems)

$i51 PARK AVENUE, FAIRFIELD, CONNECTICUT 06432-1000 (2031 371.7999 FAX (203) 365-7600 ‘

Week 3 & 4
Program Development
Assignment #2 - Declaration Types
® Data Types
® Variables
e Constants
® subtypes
Ada Executable Statements
® Assignment
® Numeric, Logical, and Relational Operators
® Hierarchy of Operators
e Control Statements (if, loop, while, for, case)
I/0 from Package Text_io
® Puts, Gets, Put_line; New_line
Review of flowcharting problem assignments
Coding in Ada - (flowcharting problems 3 sets)
® Using proper documentation and code formatting
@ Importance of naming identifiers
® Importance of code structure readability
Examples of Ada problems - 3-sets
® Wthout loop
® With while loop
® With loop end-loop
Code Flowcharting Problems in Ada
® Using proper documentation and code formatting
® Importance of naming identifiers
® Importance of code structure readability

Week 5
@ String Variable and constant declaration
- Enumeration type declaration
Homework Assignment #3 - Develop example programs using
all 3 control structures and enumeration data types
and reading
Exam | '
Week 6

® Logical Expressions
® File Processing Subprogams from Text_io
(open, create, close, get, put, end_of_file)
® Examples of File processing '
Homework Assignment #4 - Code 2 out of 3 Problems

Week 7 & 8
® Subprogram Development
® Procedures
® Functions
® Parameter Passing Modes (in, out, in out)
® For Statement - Single and nested for loops
® Handout #5 - Examples of Subprograms and For statements (Truth Table)
® Homework Assignment #5 - Change Last Assignment
to utilize Subprograms. Create single and nested for loops.

Week 9
® Exam Il
@ Class participation on using files & developing subprograms
® Exception Handling
¢ Handout #6 - Examples of Exceptions
® Homework Assignment #6 - Use exceptions

Week 10 -
® One and Multi-Dimensional Arrays
® Array type declaration
® Name notation, Positional Notation
® Handout #7 - Examples of array declaration and use
® Homework Assignment #7 - Write program using 1 D arrays

Week 11
® Separate Compilations - Procedure and Function
® Multi-dimensional arrays
¢ Handout #8 - Examples of Multi-dimensional arrays and
separate Compilations
® Homework Assignment #8 - Write program using 2-D arrays

Final Exam —

CSO050
Handout - Set #1

Handout #1

Example of an Ada Program called violet.ada :

-- Source File Name: violet.ada

This Ada procedure will simply output a picture
As directed by the put_line procedure
Programmed by S. Honda on January 15, 1994

with text_io; use text_io;
procedure violet is

-- no declarations
begin -- violet

new_line;

foriin 1..2 loop
put_line(" {>0<} . ")
put line(" {({{HNY) ~ ";
put_line(" {{{{{{{}}}}}}}} ");
put_line(" {{{ o o }} ");
put_line(" {{ =~ N ");
put_line(" { = }h ")
put_line(" ~ ~ ")

end loop;

end violet;

[—

To Compile, Link and run Program :

1. ada __violet.ada — compile source file
Source file name
2. ald violet -0 violet.exe -- link & create
procedure name executable file name executable file
3. _violet.exe -- run
executable file name

Parts of an Ada Program

context clause
® with Makes available Packages
® use Makes resources visable and directly usable
header - /dentifies Procedure
declaration
enumeration types
array types
subtypes
variables
constants
subprograms (procedures and functions)
generic instantiation of Package Text_io
executable body
® executable Ada instructions
® subprogram calls

context clause with text_io; use text_io;
header - procedure __ProcName s
executable Ada Instruction
foriin 1..2 loop
statement(s)
- end loop;
subprogram calls
put_line(" Hi There");
put("The ");
put_line("End");
new_line(2);

innb: odurexy
NHALAA S5 .
witod wonewe) W g A pamoyjog 1nb piom o £q pomogo) :, voper 8 adhL T
L114] D854 pordqey Loy xdeasg g ssang 1
:Buraes Jnoypm pxa o,
ba: opdurency
"N(LLAY 55250 10n2) o prre s 1010y Aq pamoy) 2, uopo e kg g
[11) 20 D64 PR Koy adeosy ap ssasg |

e aAes o,
“HOLIAT 1A M1 us are ok 2()
Xyaweuayy nm g

SHILLY AJIAONWSALYHID) OL

omssed mou e nok onssy
O 2A8N 11 OO BV 29 Promssid mok 123105 ppoys nok §j

LU e [T TH)

promssixl g Surmp parauds g 0o pakexdsip xg oo im promssed smo g SHLON

‘QIOMSSVd MIN ANOA
WASINCTNGTY Pe3urenyd uoay sty promssud nok *sadessow oo ou e 30) 9

NUNLA Ssg
‘urele promssed ok adhg - cpuomssed mou 102-0Y,, preddsas im wdisAs ;). g

‘NUNLAA Ssud
(-rreanyd proads/ouowny | pare ‘sioereyd snaqendie 7 1sed) 1e ‘sadeds ou
Suisa *sioemp 9 15ed) 18 ey isnur promssed angp) promssed mou ok xdky
w-OMSSRY MON, puodsas jiim waisks g ¢
‘N¥N.13Y $524d puo piromssod uasm3I mok adK g

JWeIISN J0) _.Bi.ﬂd._ un._n.ﬂa__._.w
:puodsas (m wapsds ay) ‘promssed €)25 Apeasge aauy nok §y

promssed mIN, puodsas (jim washs xngg, ‘pmssed adhy -z
“a8ud snp uo uaArd vononnsu ap Fumooy NONOT ‘8
(RMOMSS VI HNOA ONVED O,

Loils

TYnN

1¥nAY
*3p9) a0k jo Juysy e uad o X ameuNny a- s
w2138 3y o) yp v adhy o], XUy sm ¢
Kaopanp-qus 3y 0y ddumpr g, amen £10)020p » g
Liyp-qns e a0, Jwen Lopaap mpyw ¢
K303 0p anok ug Yy € AN 0L, I- us g
L3000 400k Ul Sy I 1N 04, I st s

SV NAMO'T NI
AL AU LSV LT ASVD YAMOT NTAAIVLISIA STANVIVING) H1LL
A1 AROAARINL AALLISNAS HSV) HNY SUNVIVINO.) XIND HILL - HLON

INOLLVINIOANT ANOLDNNI

“preog Ay gl wo (1, 390 | W ssaul e
I PO A9y (0NN0)) P umog PIOj] “WIsAS xmn) Wi jo jjodojog,)
AANAAIOUM 44O0I°)

promssid pue pa-gasn anok msn wdor)

Aoy amywgapssoxi pue 'y . adAgoss D ap ot ag g
! < xalhx
: Keydsap giom prunnso oy,
‘Koy 23wy o ssoud pure & sond) . xiK) 7

< JWIRLIIN JONIZ]
: Keydsip jiim jeunsd) oy
‘ewuud) Rpuo umy g

MALAIWOD HOA ANAEADO0NL NODOT

ATATALA

A A BIFAN AR NSRS BN R AL AY L4 BN X3 A Y J 1

S bonst
V1 EDITOR

THE VI EDITOR IS A SCREEN EDITOR. IT IS AVAILABLE IN NEAR
IDENTICAL FORM ON NEARLY EVERY UNIX SYSTEM,

COMPONENTS OF EDITING:

1. to insert text (insert mode)
2. to delete text (command mode)
3. to change letters or words (: command mode)

1. CASE SENSITIVE
2. NOT ECHOED TO THE SCREEN
3. DO NOT REQUIRE A [RETURN] AFTER THE COMMAND

TO INVOKE THE VI EDITOR FROM THE UNIX OPERATING SYSTEM, TYPE THE
FOLLOWING:

vi rogram. add RETURN]
!iEed%ﬂ!T!!tcnsion WHERE filename CAN BE ANY

ASCII CHARACTER EXCEPT /
WHICH IS RESERVED AS A

SEPARATOR BETWEEN FILES
AND SUB-DIRECTORY PATHS.

UPON ENTERING THE EDITOR, YOU WILL BE IN COMMAND MODE. THERE ARE
THREE MODES:

1. LINE COMMAND MODE

allovs saving and exiting of files, allows for
pattern replacement, etc.

2. COMMAND MODE
allovs movement in a file, allows one to perform
edits, and to enter insert mode.
(Keyboard keys have nev meaning)

3. INSERT MODEB

used for inserting or appending text to your file.
(Keyboard is used like a typewriter)

1. COMMAND MODB
A. CURSOR MOVEMENT

moves 1

o . 3y

COMMANDS ;

space to left of cursor position

moves dowvn a line
moves up 3 line
moves 1 space to the right of cursor position

The e | 1T —» cursor movement keys vill do the
above also. However they are out of the vay.

(ol 4]

Ctrl
Cerl

ctrl

moves
noves
moves
noves

BULL

moves
noves
noves
moves
noves
moves

ot o, o~ 00 @

moves cursor to the top of screen
moves cursor to the middle of screen
moves cursor to the last line of screen

f moves forwvard by screen

b moves backwvard by screen
Ctrl d moves forwvard 1/2 screen

u @moves backvard 1/2 screen

cursor forvard vord

forvard by word (ignoring punctuation)
backvard by wvord

backvard by word (ignoring punctuation)

cursor to end of word -

to end of word (ignoring punct)

to beginning of previous sentence
to beginning of next sentence

to beginning of previous paragraph
to beginning of next paragraph

SIX BASIC EDIT COMMANDS

nd mode

delete vord(s) line(s)

;. { insert mode

. a

3. ¢ change vord,line
4. d

S.) 4

3

yank line(s)

-—88C

(REBTURN)

Ml e
étL{ 8;’5-_%__‘

R { LINE COMMAND

EDIT COMMANDS IN COMMAND MODEB

OBJECT Change Delete Copy

1 word cv dw yv

2 words, ignoring 2¢W or 28W or 2yW or
punctuation caw az2w yaw

3 vords back 3cb or 3ab or 3yb or

c3b dib y3b

1 line ce da yrory

to end of line c$orC d4s or D Y$

to beginning of line ce a9 yg

single character r z -yl

OTHER COMMANDS IN COMMAND MODE
place text from buffer por P (stay in COMMAMD
MODE)

insert mode i

append mode : a

append at end of current line A

insert at beginning of line I INSERT MODE
open up line below cursor o

open up line above cursor o

11. COMMANDS IN LINE COMMAND MODE: (note that the : gets you to
— line command mode from command

mode)
vrites (saves) the buffer to the v
file but does not exit.
quits the file (and returns to :q
UNIX prompt.
Both vrites and quits the tile tvq
quits the file (emphatic) :1q!
vrites the file (emphatic) sl

.

10.

11.

12.

13.

14.

Is -

cp

filet file2

Ipr -Pp,

Unix Commands

list directory of current path

copies file1 to file2

remove file

change directory to root directory
change to subdirectory one level
above :

prints out files

filet file2
vaxi

vax2

s107
vi
more
Ctric
Ctri d
passwd
cal

cal
year

cat >

invokes the vi editor

types file to screen

breaks out of a loop

logoff terminal

to issue password

givqs you the calander for

gives you the calander for the year

redirects output (used to capture
output)

concatenate files 1 and 2 to file3

file1 file2

file3

to compile link and run ada programs:

ada _Source file name

ald _Main procedure name

a.out

compiles ada source file
links object code
runs executable code

Printing Source Program and Program Output

BEGIN LOG FILE.

shu.sacredheart.edu> script __filename lis

TYPE PROGRAM TO SCREEN

csh> cat filename.ada

RUN PROGRAM

csh> filename.exe

REPEAT STEPS 2 & 3 IF REQUIRED

END LOG FILE

csh> [CTRL-d]

PRINT LOG FILE

shu.sacredheart.edu> Ipr -Pvax1 _f{ilename.lis

TO RECIEVE MAIL

1. AT THE SYSTEM PROMPT TYPE THE FOLLOWING:

SHU> mail (RETURN] -- puts you into mail facility
2. YOU WILL SEE A NEW PROMPT "&" AND A LIST OF MAIL FROM .

OTHER USERS. TYPE THE FOLLOWING:

&1) (RETURN] -- types lst message to you

& s main.ada [RETURN] -- extracts message to file

-- main.ada
& x {RETURN] -- leaves mail facility

TO SEND MAIL
1. AT SYSTEM PROMPT TYPE :
SHU> mail 11la0l (RETURN]
2. TYPE A ONE WORD SUBJECT IF YOU LIKE, OR JUST A RETURN
Subject: Party [RETURN]

3. ' NOW TYPE YOUR MESSAGE; AS MANY LINES YOU LIKE
S. CC MEANS COPY TO OTHER USERS IF YOU LIKE, OR JUST RETURN

CC: [RETURN)

WHILE IN THE MAIL FACILITY, YOU MAY WANT TO USE THE FOLLOWING

COMMANDS :

& h - lists the mailgrams

& d - deletes the mailgram you have currently selected

&2 — ' - selects mailgram number 2 and types it to you

& s filename - extracts mailgram to a file called filename

& x - leaves mail facility, not saving changes
(deleted mailgrams will not be deleted)

& q - leaves mail facility, saving chages
(deleted mailgrams will be deleted!)

& Ctrl-c Ctrl-c abandons mailgram- does not send it!

-- FILE : ART.ADA

-- This package contains a list of available student procedures.
- Note that the implementation of the procedures are not found
- here. They are in the package body.

- Fall 1993 S. Honda

package art is
procedure desk:
procedure tree;
procedure hi;
procedure house;
procedure boat;
procedure house2;
procedure tracks;
procedure dog:;
procedure rocket:;

end art;

.......... - O P WP D R D D D oS D UGB P D D TS T WD WS WD . W

ARTBODY .ADA
This package body contains student programs from CSO50A

Note that the implementation of the procedures are found here.
Honda

FILE ¢

Fall 1993

with text_io; use text_io;

package body art is

........ propngepepsg e Y T T T T X LT L L T 2 L L L XL LT

--Program by: DARS HAN

-------------------- 09/16/93

procedure desk
begin--desk
: put
put
put
put
put
put
put
put
put
put
put
put
put
put
end desk;

- - G @b oD an D B W W oS W - e ar = o

tree.ada
This program creates a tree-pole
It uses a package called text_io that allows for I/O
Programmed by Pom Sirichantho

file :

is

line("
line("
line("
line ("
line("”
line("
line("™
line("
line("
line("
line("
line("
line("™
line("

- W D S aP WP D G G EP P B G Gy T ED N TR 4D R D Ob AP D 4 e s o

procedure tree is
begin -- tree

put_line("
put_line(”
put_line("
put_line("
put_line("
put_line(*
put_line(®
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("

-

((
((
(

bt
((...i.))

((etsasnsss))
(sa00s(0)danes)
(vevs (aas) aaes)
g((aao(a)tao)))

(‘t..().tt.)))

(sae\|/see)

L 1]

te &

put_line(" wecome to CS050!%):

end tree;

)
)
)

et

— Nt e e Nt G s NP S
e B8 We W We Ve Ve We e Vo o

i
333
-y W -

”);

I'..lll'.llllll
e S P o P Vs S N St Nt N NP S P

ne ®e WG We W e e Va Ve Ve Ve Ve V6 W ¢

.- £ile: Hi.ada T
-- This program creates a Hi
-- It usees a package called text_io that allows for I/0
- Programmed by Daniel Dasilva
procedure hi is
begin =-- hi
nevw_line:;
put_line(® ¢ * * ")
put_line(® ¢ » * "),
put_line(® ¢ . * ")
put_lin.(. (221332 R 2] » .)g
Put_line("] * LA
Put_line(" * » ' "),
Put_line(® # * . m),

Put_line(" ®):
Put_line(" Welcome to CS05"):new_line;
end hi;

-- file : house.ada by Don Osvay
procedure house is
begin =~ house
put_line(*"
93: ii:‘f' /<////////////////////<
| 4 e(” -
put_line(" / \ \
put_line(" / \ \
put_line(" / _ \
put_line("
put_line("))]
put-1ine(" N
put_line("
put_line(" +++4 +4++4++ +r++4
put_line("
put_line("
nevw_line;
end house;

Wt s Nt N P P il P i P P s ot

We We WE ME Ve Ve Mg Ve W Wg W Vo Vo

-- file : boat.ada
-=- Joe Peddle -

procedure boat is

begin -~ boat
put_line(" *
put_line(" \
put_line(" \
put_line(" \
put_line(" \
put_line(" \
put_line(" wm————
put_line(" L
pug_l ine(" SEEESE RSN
put_line(” \\ //
put_l ine (" EEEREEESEEE

end boat;

s ® W W W WP VP NP P P
NG W9 VO VP V9 T V9 W9 B9 W 0

- file : house2.ada

procedure house2 is

begin -- house2
put_line("
put_line("
put_line(* /\ \
put_line(" / \ \
put_line(" / \ \
put_line(" / \ \
put_line("-
pu: iinoz: +44++ ++++d ++++4
pu ne /\
put_line(" l l I/ \I I/ \l
put iino(' ++++ +++4++ +++4++
put ne("
put_line("

end house2;

Ve WO Ve Ve Ve Ve Ne T4 Wh V0 s B O

-- file : planet.ada
-- This program creates railroad tracks

-=- It uses a package called text_io that allows for I/0
-=- Programmed by: Chauncey Wilson
procedure tracks is

begin -- tracks

put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put _line("
put_line("
put_line("
put_line(”
put_line("”
put_line("
put_line(”
put_line(”
put_line(”
put_line(”
put_line("
put_line("

e N P N WP N P P S N P Nt N al P) s st il StV et

®6 %o %6 Te W e T W VO TG Ve W6 V6 We e e e e s Ve V6 O

end tracks;

-- This program drawvs a dog.
-=- Programmer: Jason Blais
-= Date: Sept. 17, 1993
procedure dog is
begin --Start drawving
put_lj_n.(' ' Y2122 113231} ') H

put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line("
put_line(*”
put_line("
put_line("
put_line("
put_line(”
put_line(*

end dog:

.)o

'Y . O =» :;:
* . teeses ®);
* * e ®);
¢ * VVV ")
tendee ");
* VAVAVANS B

* saddtas W),

* tessnes ¥),;

* * ");:
SESRSRSRENBES .);
Py "):
SsansEaaEEnEs ');

file:

rocket.ada

This program creates a rocket

it uses a package called text_io that allows for I/0

Programmed by C. Marable

procedure rocket is

end art;

begin -- rocket

pu
pu
pu
Py
pu
pu

put
pu

pu

pu

pu
put_line("

end rocket;

t
t

t_1

t line(" /7°\
line(" //=\\
t line(" / ===\
line("
line("
line(" / \
line (" / \
ine(" / \
line(" / \
line(" / \
line("

Welcome to CS050!");

e WS Ve W VG W WY B W e o

FILE : MAIN2.

This program uses the art package.

statment.
Fall 1993

ADA

uonda

with text_io,art; use text_io, art.
procedure ! nainz is

again, ansver : character; _
begin -- main2
loop
put_line(" Menu Choices"):;
put_lin.(. BEEEsESEEsEsEEsEEsnEnsEEnnns®) o
put_line("™ (A) DESK (F) HOUSE2")
pu t_line(" (B) TREE (G) TRACKS')
put_line(" (C) HI (H) DOG ")
put_lino(' (D) HOUSE (I) ROCKET"):
ut_line(® (E) BOAT (Q) QuUIT

-=- declaration of variables

It also uses the case

put line("What would you like to see ");
put(' Type A,B,C,D,E,F,G,H,I OR Q ==>
got(ansvcr);ncw_lino;

case ansve
when
when
when
when
when
when
when
when
when
when
when
end case;
new_line;
end loop;
put_line("

end mainz.

r is

!Al lai
lBl lbl
lc' lcl
lDl ldl
IEI l‘l
.F' lt!
'G! lgl
lul lhl
lIl lil
'Q. Iq'
others =>

That's all folks!"):;new_line;

=>
=>
=>
=>>
=>
=>
=>
=>

desk:;
tree;
hi:;

boat;
house2;
tracks:
dog;
=> rocket:;
=> exit;
put_line("

house; - .

«e We %9 %

)i

") ;new_line;

-=- this will exit loop
€#!!! wrong input !!!%);

EXECUTION RUN OP HAIN2 ADA

Menu Choicel

ERA VRNV R RNV EBEENERERINIEIEITIREE

(A)
(B)
(C)
(D)
(E)

* % %%

SRR AARANAAS
* *
* 0O *
®
*
*
Y11

*

DESK (F) HOUSE2
TREE (G) TRACKS
HI (H) DOG
HOUSE (I) ROCKET
BOAT (Q) QUIT

What would you like to see
Type A,B,C,D,E,FP,G,H, I ORQ ==> h

112112
*d

VvV
/\N/\V\

* thbkhd®
® t 2 X221 31
*

*
BB S SR EERES
N
BNEBENERSNRERIE

WOOF, WOOF!!

Menu Choices

SIERESNANSIENE SIS EES REEN RS IEIE IR

(A) DESK (F) HOUSE2
(B) TREE (G) TRACKS
(C) HI (H) DOG
(D) HOUSE (I) ROCKET
(E) BOAT (Q) QuUIT

What would you like to see
Type A,B,C,D,E,P,G,H,I OR Q ==> I
/°\

/7-\\
/ ===\

/ \

/ \
/ \
/ \

Welcome to CS050!

Menu Choices

(A) DESK (F) HOUSE2
(B) TREE (G) TRACKS
(c) HI (H) DOG
(D) HOUSE (I) ROCKET
(E) BOAT (Q) QUIT

What would you like to see
Type A,B,C,D,E,F,G,H,I ORQ ==>p
€#!!! wrong input 1!}

Menu Choices

(A) DESK (F) HOUSE2
(B) TREE (G) TRACKS
(¢) HI (H) DOG
(D) HOUSE (I) ROCKET
(E) BOAT (Q) QUIT

What would you like to see
Type A,B,C,D,E,F,G,H,L I ORQ ==> q
That's all folks!

Flowcharting Symbols

1. Start/End

End

2. 1/0

| L
\I\nput PartNo, Oty\ Output Narrk_
U I

3. Processing

Cost = Price * Qty_]
v

N
[Sum = Sum + Cost

)

4, ‘Decision Making

5. Connection

Logic Patterns

1. Simple Sequence

L

\lnput A, B\

I

calc C=A"*B

\outp;.ut CL
I

2 Decision Logic Pattern

_Input C

A>B

3.

T

—

| OVTHr=Hr-40.0|

Cost =Qty*Rate

Vv —

\.Ohtput Cost \

y

oY J.’.“
r € 27

7’

—— e .y ey

Hr > 40.

i

N

[ovThr=00]

R T Y

\nput ID Qty, Rate'\

[Cost

= Qty* Rate1

\Output Cost X

R

\Input Again_
T

—<—Again="Y
F

Flow charting Problems

Input two integer numbers, A and B. If the first is greater than the second, print
“Larger”, otherwise print “Not Larger".

Input an ID Number, Rate of Pay, Hours Worked, and the Tax Rate. Caiculate
Gross Pay, Taxes owed, and the Net Pay. (Remember to pay Time and a Half for
Over-Time Pay). Print out the Gross Pay, Taxes Owed, and the Net Pay.

You need an air conditioner. You need one between S000 and 6000 BTU's. You
want to find one with the highest Energy Efficiency Ratio (EER) because it will be
the most economical t0 operate.

Number of BTU's
EER =

Number of Watts

You are considering three air cdriditioners:

MODEL BTU WATTS
A 5000 820
B 6000 910
C 5500 850

Which one should you buy? Print out the EER values of all three Units and a
message indicating the most efficient unit to operate, Model A, B, or C.

Iinput an ID Number, 3 Test Grades and a Final Exam. Each test is worth 20%
and the Final Exam 40%. Calculate the Final Score. Print also the ID Number.

Suppose there are more students in the class (Referring to problem 4). | would
like to process all the students in one execution run. Revise the flowchart such
that many students could be processed. If the ID is equal to an END OF DATA
TAG such as -999, there are no other students to process. -999 Marks the end
of the data list. Modify the flowchart for Problem 4.

Do the same for problem 1 and 2 such that several sets of data can be processed.

Each salesperson eams a base salary of $185.00. Moveover, if a salesperson’s
total weekly sales exceeds $1000, a commission of 5.3% is earned on any amount
up to $5000 and 7.8% is earned on any amount in excess of $5000. Determine
the weekly Pay, for any Salesperson whose total weekly sales amount is input.
Print out the Saleman'’s ID and his weekly sales and pay. Use an EOD TAG to

10.

11.

12.

terminate the Program.

Input two Numbers X and Y. |fthe sum of X + Y is greater than 42, print out "42".
if not, increase X by 10 and Y by 3. Print out the next X and Y values and check
to see if the sum is grcater than 42. Continue until the sum is greater than 42, at
which time you need to. output "42".

Input a list of numbers one at a time. The last value, not part of this list is 999.
This marks the end of the data list (EOD). Print the smallest and the largest
values of the list excluding the last value 999 which is not part of the list.

Input a list of Numbers whose EOD is 999. Print out the Largest and also a count
of how many numbers are included in the list.

Several pairs (X,Y) of Numbers are to be input. Any pair with the first value equal
to the second value serves as the End of Data (EOD). Determine and print out
counts ~f how many pairs satisfy X<Y and how many pairs satisfy X>Y.

Follow the following algorithm:

a. Input a value for N.
b. if N is less than or equal to zero, goto step (a.)
c. It N is greater than 100, output "Value is too Large" and goto

step (g.) 1 5

d. If N is greater than 90 calcu.ate the SUM = 50+4§~W+...+N and
goto step (f.)

e. Calculate the SUM = 1+2+43+4+...+N

f. Output the value of SUM.

g. Print out the message “Goodbye™ and stop.

CS0bHO0
Handout Set #2

Handout #2
Predefined Types and Subtypes found in package STANDARD:

INTEGER
POSITIVE
NATURAL
FLOAT
DURATION
CHARACTER
STRING
BOOLEAN

(Note: Numeric values are implementation dependent)
Ada Data types

I Scalar Data Types
A. Discrete Types
1. Integer
a. INTEGER
b. user defined
2. Enumeration Types
a. CHARACTER
b. BOOLEAN
C. user defined
B. Real types
1. Floating point
a. FLOAT
b. user defined
2. Fixed Point Types user defined
. Composite Types
A. Array
B. Record
lli. Access Types
Iv. Task Types
V. Private Types
A. Limited Private
B. Private

Examples of Declaration Statements:

1.

Examples of Variable Declarations: (Variables may be assign values in the program)
Hours : integer;)

Rate, TaxRate, Taxes : float;

Middielnitial, Again : character;

Answer : boolean;

Weight, Age : positive;

Examples of Constant Declarations: (Constants do not change in the program)

Pi : constant float := 3.14;

BasePay : constant float := 185.00;

Greetings := constant string := "Sacred Heart University";

Instantiation of generic packages to allow for I/O (input/output):

package _jio_ is new integer_io(integer); use iio; (allows for integer 1/10)
package _fltio is new float _io(float); use fltio; (allows for I/0 of decimal values)

package _Answer io is new enumeration_io(_bgolean); use Answer_io;
(Allows for 110 of boolean values)

Ada Executable Statements

1.

Assignment Statements - Assigns a value to a variable. The value on the right is
assigned to the variable on the left of :=

Syntax : =
variable value, expression, or variable
Examples: Rate := 12.43;
Hours := 40.0;
Gross := Rate * Hours;
Again :='Y";

Procedure Calls - Procedures are invoked or called by using the procedure name.

Examples: put("Hours Worked "); Put(Hours);
new_line; put_line(" Wonderful Days!”);

The procedures put, new_line, and put_line are invoked to output values

Examples: put("Enter The Hours Worked ==> ");

get(Hours),
new_line;
The procedures put, get, new_line are invoked by using their names.

If Statements - Allows the computer to make decisions and take one of several paths.

if then
statement(s)
else
: {optional clause)
statement(s)
end if;

While loop - Allows for repetition; The test 1o end the loop is at the top of the loop
(for pre-test loops)

syntax: while loop
statement(s)

end loop;

Loop=Endloop - Allows for repetition; The test to end the loop is at the bottom.
(for post test loops)
syntax: loop
statement(s)
exit when :
condition(s)
end loop;

Program /O (Input/Output)

Generic Instantiation of data types other than character or strings.
Package Text_io allows for 1/O of these DataTypes by providing
some generic packages. Generic Packages are not directly usable.
They must be instantiated with a particular data type before use.
Instantiation creates a new package from the generic package which
is like template. These new packages now contain the PUT and
GET procedures that allow for 1/0.

Generic Packages you may be using:

Syntax:

Float_io
Integer_io
Enumeration _io
Fixed _io

type [OTypeName s new genericpackagef datatypel:

examples:

or,

type Int_io is new integer_io (integer): - get,put integers
type Flt_io is new float_io (float); -- get,put floats
subtype AgeType is integer range 1..104;

use Int_io, Fit_io;

Id : integer;

Age : AgeType;

Amt : float := 1.03e2;

get(ld);
get(Age); --Package Int_io allows 1/0 of integer subtypes
put(Amt);

if the only variable requiring 1/0 is Age,
type Int_io is new integer_io (AgeType);
... get(Age); put(Age);

Ada Language Character Set used to build ADA words or lexical units
95 ASCII graphics character set

Basic Set:
26 upper case letters (A,B,C...2)
10 digits (1,2,3,4,5,6,7,8,9,0)
19 special characters "#&'()*+,-./:;<=>_|
and the space character

Also included in the Basic set are the following characters:
26 lower characters (a,b,c...2)
additional special characters !'$%?@[\]"°‘{} ~

Ada Lexical Units
are identifiers (including reserve words), numeric literals, character literals,
string literals, delimiters and comments. A lexical unit must fit on one line.

Embedded spaces are not permitted except in strings or comments.

Identifiers are names that are defined byt the progrrammer for such entities
such as procedures, packages, tasks, variables, labels, functions, constants,
etc. First characters of an identifier must be a letter followed by any number
of letters or digits or an embedded underscore.

Reserved words are considered identifiers.

Numeric literals are Integer or Real literals
example of integer literals:
15 23 123 423 1E3 42E2

—;mpbofmlmmk:
15.0 -22.34 3.115.92 12.2E+4 41.35E-7

Other numeric literals in other bases:
2#101_111 S#57# 16#22F - Integer, decimal value 47

16/ESEL 2#1110_0000# - Integer, decimal value 224
(base) #Number Mantissafoptional power

exampies of character
'A‘ ’+l 1 22 ”" | B]

examples of string literals
*Hello There®

—_—

DELIMITERS
&'() s, . + -1 :; < = > |
or these special compound symbols:

=> o s 1= >= <= €< >> <>

COMMENTS start with two hyphens and extent to the end of the line.

Ada Operators
Operators Operation

b Exponentiation
abs absolute value
not - logical negation
rem remainder
mod modulo
/ division
. multiplication
+ unary sign
- negation
& binary catenation
- subtraction
+ addition

relational operators
>=
< —_
>
<=
t]
[=

logical xor exclusive or
or inclusive or
and conjunction

D P D P R D D D D S P I P M W G D e W D D G D D G D e G D T WD R T P D T W YR WS . . - - -

- File : payroll.ada
-- This procedure does payroll for one user
-- Ptogranncd by S. Honda February 8, 1994

with text_io; use toxt _lo;
procedure payroll is
-= variable declaration
gross,net hours,rate,txrate,taxes,otp,regp :
id : positive;
-- generic instantiation for I/0
package iio is new integer_io(integer);
package fltio is new float io(float);
use iio,fltio;
begin -- payroll
put ("Enter id ==> %): get(id);new line;

float;

put ("Enter hours worked in decimal format xx.x ==> %)
get (hours) ;new_line;

put ("Enter rate per hour ==> $"); get(rate); new_line;
put ("Enter taxrate in decimal format x.xx ==> %)

get(txrate) ;new_line;
- calculate overtime and regular pay
if hours > 40.0 then
regp := 40.0 * rate;
otp := (hours - 40.0) * rate * 1.5;
else
regp := hours * rate;
otp := 0.0;
end if;
-= calculate gross,taxes, and net
gross := regp + otp;
taxes := txrate * gross;
net := gross - taxes;
-= output answers

put_line("------ececccccccccncccrcccca- ");

put("id ==>), put(id), new_line;
put("over time pay is ==> $");
put(otp,5,2,0) ;new_line;
put("regular pay is ==> §n);
put(regp,5,2,0) ;new_line;

put(®"r.et pay is ==> S"),put(net,s,z,O); new_line;

put_line("----cccccmccccccccmncnrcccaa- ")
put_line(® END OF JOB!");
end payroll;

-- TO COMPILE, LINK, AND RUN PROGRAH

sacredheart.shu> ada payroll.ada

sacredheart.shu> ald -o payroll.exe payroll
sacredheart.shu> payroll.exe

Enter id ==> 1111

Enter hours worked in decimal format xx.x ==> 10.0
Enter rate per hour ==> § 5,00

Enter taxrate in decimal format x.xx ==> 0.50

id ==> 1111
over time pay is ==> § 0.00
regular pay is ==> § $0.00

-=- COMPILES
== LINKS

put (“tax amount is ==>$ "); put(taxes,4,2,0); new_line;

-- RUNS PROGRAM

tax amount is ==>§ 25.00
net pay is ==> $ 25.00

END OF JOB!

sacredheart.shu> payroll.exe == TO RUN PROGRAM AGAIN
Enter id ==> 2222

Enter hours worked in decimal format xx.x ==> 41.0

Enter rate per hour ==> $ 1.00

Enter taxrate in decimal format x.xx ==> 0.50

id ==> 2222

over time pay igs ==> § 1.50
regular pay is ==> § 40.00
tax amount is ==>§ 20.75

net pay is ==> §

END OF JOB!

20.75

sacredheart.shu>
1111
10.0
5.00
0.50
sacredheart.shu>
2222
41.0
1.00
0.50
sacredheart.shu>
sacredheart.shu>

payroll.exe>payroll.run

payroll.exe>payroll.run2

cat payroll.ada payroll.run payroll.run2 > payroll.lis

lpr -Pvaxl payroll.lis

- Pile : payrolll.ada
- This procedure does payroll for everyone
-~ Programmed by §. Honda February 8, 1994

- e o S A D D P D G T D T G AP W e T D D D W D D R A WP AR R TS D e WP WP T D P W T -

with text_io; -- noto that there is no use clause for this package
procedure payrolll is

-- variable declaration
gross,net,hours,rate, txrate,taxes,otp,regp : float;
iad : integer;
again : character;

-~ generic instantiation for I/0
package iio is new text_io.integer_io(integer);
package fltio is new toxt io.float" _io(float);

-~ note no use clause for package iio and fltio

begin -- payroll3
loop
== prompt user for data
text_io.put("Enter id ==> "); jijo.get(id);
text_io.new _line;
jtoxt io.put("Enter hours worked in decimal format xx.x ==> ");
f1tio.get (hours); text_io.new_line;
text_io.put("Enter rate per hour ==> $"); fltio.get(rate);
tcxt io.new_line;
text_io.put("Enter taxrate in decimal format x.xx ==> ");
fltio. get(txrate); text_io.new_line;

=~= calculate overtime and regular pay
if hours > 40.0 then

regp := 40.0 * rate;

otp := (hours - 40.0) * rate * 1.5;
else

regp := hours * rate;

otp := 0.0;
end if;

-= calculate gross,taxes, and net
gross := regp + otp; .
taxes := txrate * gross;
net = gross - taxes;

== output ansvers

text_io.put_line(" —————) e
text_io.put{"id ==> "); ijo.put(id); text_io.new_line;
text_io.put("over time pay is ==> $%);
fltio.put(otp,5,2,0); text_io.new _line;
text_io. put('roqular pay is ==>7§%);
fltio.put(regp,5,2,0); text_io.new_line;
text_io.put(“tax alount is ==>$ ") fltio.put(taxes,4,2,0);
text_ —io.new _line;
text_io.put("net pay is ==> §"); fltio.put(net,5,2,0);
taxt_ —io.nev_line;
text_io.put_line(" *);
text_io.put{"Do you wish to do this again? (y/n) ==> ");
text_io.get(again); text_io.new_line;
exit when (again /= ’y’);

end loop;

text_io.put_line(" END OF JOB!");
end payrolll;

-~ TO COHPILB, LINK AND RUN PROGRAH

oacrcdhoart.shu> ada payrolls.ada -= COMPILES
sacredheart.shu> ald -o payrolll.exe payrolll ~-= LINKS
sacredheart.shu> payrolll.exe == RUNS PROGRAM

Enter id ==> 1111

Enter hours worked in decimal format xx.x ==> 10.0
Enter rate per hour ==> § 5,00

Enter taxrate in decimal format x.xx ==> 0.50

id ==> 1111

over time pay is ==> § 0.00
regular pay is ==> § 50.00
tax amount is ==>§ 25,00

net pay is ==> § 25,00

Do you wish to do this again? (y/n) ==>y

Enter id ==> 2222

Enter hours worked in decimal format xx.x ==> 50.0
Enter rate per hour ==> § 1.00

Enter taxrate in decimal format x.xx ==> 0.10

- - -a - e e

id ==> 2222

over time pay is ==> § 15.00

regular pay is ==> § 40.00

tax amount is ==>$§ 5.50

net pay is ==> § 49.5%0

Do you wish to do this again’ (y/n) ==> n
END OF JOB!

- File : payrolll ada
- This procedure does payroll for the entire company
- Programmed by S. Honda February 8, 1994

with text_io; use text io;
procedure payrolll is
-=- variable declaration
gross,net, hours,rate,txrate,taxes,otp,regp : float;
id : integer;

-- generic instantiation for I/0
package iio is new integer_io(integer);
package fltio is new float _lo(float);
use iio,fltio;

begin -- payrolll
== prompt user for id
put("Enter id (-999 to end) ==> "); get(id);new_line;

-- Create a loop to process payroll

while id /= -999 loop
put ("Enter hours worked in decimal format xx.x ==> ");
get (hours) ;new_line;
put ("Enter rate per hour ==> $"); get(rate); new_line;
put ("Enter taxrate in decimal format x.xx ==> %)
get (txrate) ;new_line;

== calculate overtime and regular pay
if hours > 40.0 then

regp := 40.0 * rate;

otp := (hours - 40.0) * rate * 1.5;

else
regp := hours * rate;
otp := 0.0;

end if;

== calculate gross,taxes, and net
gross := regp + otp;
taxes := txrate % gross;
net i= gross - taxes;

== output answvers
put line(¥~-===- ceceecrcccc e e e - ");
put("id ==> *);put(id);new line;
put(“"over time pay is ==> 3v);
put(otp,5,2,0) ;new_line;
put("roqular pay is ==> $v);
put(regp,5,2,0) ;new_line;
put (“tax anount is ==>$ "); put(taxes,4,2,0); new _line;
put(®"net pay is ==> $“),put(net $,2,0); new_line;
put_line(Yewwecccccccnccccrcnccnccna- --");
-=- prompt user for next id
put ("Enter id (-999 to end ==> "); get(id);new_line;
end loop;

put_line(® END OF JOB!");
end payrolll;’

- w> e w - - - e - - G b G G G G G W G D D W D G R S AR G AR W e Gh P D D D AR G5 G SR OB D AP D T WD WP P D W e -

- TO COMPILE, LINK, AND RUN PROGRAM

sacredheart.shu> ada payrolll.ada -- COMPILES
sacredheart.shu> ald -o payrolll.exe payrolll == LINKS
sacredheart.shu> payrolll.exe == RUNS PROGRAM

Enter id (-999 to end) ==> 111
Enter hours worked in decimal format xx.x ==> 10.0
Enter rate per hour ==> § 5.00
Enter taxratc in decimal format X.xx ==> 0.50
id ==> 1111
over time pay is ==> § 0.00
regular pay is ==> § 50.00
tax amount is ==>§ 25.00
net pay is ==> § 25,00
Enter id (-999 to end ==> 2222
Enter hours worked in decimal format xx.x ==> 41.0
Enter --te per hour ==> $ 1.00
Enter rate in decimal format x.xx ==> 0.50
id == 21222
over ° pay is ==> § 1.50
regular iy is ==> § 40.00
tax amou.it is ==>§ 20.75
net pay 13 ==> § 20.75
Enter id (=999 to end ==>
END OF JOB!

CSO05H0
Handout Set #3

Handout #3

String Variable Declaration - Strings are deciared as an array of
characters. It contains multiple storage spaces for characters.

Syntax:
ring variable name : string(1..10); -- allows 10 characters

examples:
FirstName : string(1..12);
Address : string(1..24);
zip : string(1..5) := 06611; --initialize zip

Enumeration Type Declaration - User may define their own data type.
The data values must be enumerated in a type declaration statement
in a particular order. In order to accomplish 1/0 for each different
type, the user must instantiate each enumerated data tye.

Syntax: type _EnumeratedTypeName s (_datatype values);
VariableName _ : EnumeratedTypeName;
examples:

type FishType is (cod, salmon, mahimahi, ahi, catfish);
Fish : FishType;

_ type ComputerType is (IBM, Apple, Dec, Compaq);

- Computer:ComputerType : = Dec; --initialize Computer

Generic Instantiation of FishType and Computer Type - To aliow for 1/O

Syntax: type InstTypeName_ is new genericpackage(datutypel;

examples:
type Fish_io is new enumeration_io(FishType):
type Computer_io is new enumeration_io(ComputerType);
use Fish_io, Computer_io;

type day_type is (monday,tuesday,wednesday,thursday,
friday,saturday,sunday);
day : day_type;

if statement
if day = saturday then
put_line("Play");

else
if day=sunday then
put_line("Sleep”);
else
if day = friday then
put_line("Call in sick");
put_line("Play computer games!");
else
put_line("Go to work!");
end if;
end if;
end if;

if’s with elsif clauses
if day= saturday then
put_line("Play");
elsif day=sunday then
put_line("Sleep");
elsif day = friday then
put_line("Call in sick");
put_line("Play computer games!");

else
put_line("Go to work!");
end if;
Case Statement
case day is
when saturday = > put_line("Play");
when sunday => put_line("Sleep™);
when friday => put_line("Call in sick");
put_line("Play computer games!");
when others => put_line("Go to work!"};

end case;

Case Statement

The Case expression must bz of a discrete type

Each of the possible values of the case expression must be covered in one
and only one when clause.

If the when other used, it must appear as a single choice at the end
of the case statement

Choices in a when clause must be static

Case Statement Example
atomic_number : integer range 1..105;

case atomic_number is

when 1

=> put("Hydrogen");
when2] 10| 18 | 36 | 54 | 86

=> put(“Noble Gas");
when3 | 11} 19|37 |55 87

=> put("Alkali Metal");
when4 | 12120} 38| 56 | 88

= > put("Alkaline Earth Metal");
when5 | 13 | 31 | 49 | 81

=> put("Aluminum Family");
when 6 | 14 | 32 | 50 | 82

=> put(Carbon Fanily "),
when 71533151 83

=> put("Nxtrogen Famnly"),
when 8 | 16 | 34 | 52 | 84

-> put("Chalcogen");
when9 | 1713553 | 85

= > put("Halogen");
when 58..71

=> put("Rare Earth");
when 90..103

= > put("Actinide”);
when others

=> put("Transition Metal");

end case;

Which Case Statements are Legal?
response : character;
get(response);
case response is. - using selectors

when’Y’ | 'y => put_line("You are begin positive");
when'N’ | 'n" => put_line("You are being negative");
end case;

type day_of_week_type is (monday,tuesday,wednesday,thursday,
friday,saturday,sunday);
day : day_of_week_type;

case day is - using discrete range
when monday..thursday => put("Go to work!");
when friday => put('Take sick leave");
when saturday.Sunday => put("Watch TV");
end case;

)
subtype age_type is float range 0.0..18.C;
ase age_type

case age is

when 0.0 .. 120 => put("Child");

when others => put("T eeny-Bopper");
end case;

my:mm
get(max);
case value is
when1.max => put('In range”);
when others => put("Out of range”);

—nd case;

~ max : integer := 5;
value : integer :=2;

case value is
whenl. max => put("In range”);
when others => put("out of range”);
end case;

CSO050
Handout Set #4

Handout #4

Logical Expressions

Logical Expressions (sometimes called boolean expressions) are
expressions that evaluate to boolean values true or false. Boolean
Variables may be assign to boolean constant values of true or false.

In a declaration section where

Again : boolean ;
A,B :integer ;

In t'he executable body where
Again : = true ;

while Again loop
statement(s) ;
put("Do you wish to repeat this? (true or false ") ;
get(Again) ;
end loop;

if A >500 then
_Statement(s) ;

—end if ;

In the atove examples Again : = true, Again, and A>500 are examples
of Logical or Boolean Expressions. Both expressions evaluate to true or
false.

Sequential File Processing in Ada

The following subprograms from Text_io are generally used in sequential
file processing:

Procedures open, close, create
Function end_of file

1. The open procedure allows a physical data file to be opened and
used for input.

syntax:
open(LogicalFileName, filemode, filename);

Where LogicalFileName is an identifier thatis declared as a file_type,
filemode is In_file or out_file, and
filename is the physical file found on secondary storage.
The name of the physical file can be enclosed in quotes,
or the name may be stored in a string variable.

Examples:
Sam : file_type;
open{Sam, in_file, "payroll.dat");
or
Sam : file_type;
FName . string(1..11);

put("Enter filename, [exactly 11 characters please] ");
get(FName); new_line;
open(Sam, in_file, FName);

2. The close procedure closes an opened file. Remember to close all
opened files in your program when not needed.

syntax: close(_LogicalFileName);

Example: close(Sam);

3. The test for end of file can be done with the function end_of _file.
This function returns a value of true if the end of the file is reached;
otherwise it returns a value of false.

Example: Sam, Joe : file_type;

FileName : string(1.11);
PayRate : float;

open(Sam, in_file, Filename);
open(Joe, in_file, "acctpay.dat”);
while not end_of_fil2(Sam) loop
get(Sam, id);
get(Joe,ld); get(Joe,PayRate);

end loop;
close(Sam);
close(Joe);

4. The create procedure will create a file for output.
syntax: create(icalFileName, _filemode , filenamel;
Example:

OutFile : file_type;
Rate : float ;
Hr : float ;

-- prompt user for data

put("Enter Pay rate ==> "),
get(Rate); new_line;
put("Enter Hours worked = => ");

get(Hr); new_line;
create(OutFile, out_file, "PayFile");
put(OutFile, "Pay file - 1993"); -
put(OutFile, Rate); -
put(OutFile, Hr); -

header in 1st record of file
writes pay rate to file
writes hours worked to fiie

;:I.o.se(OutFiIe);

COMPARING
Instructions

A report of the dook royaities for authors is to de prepered. A program should be designed and
coded to produce the repon.

Input

input congists of ssies records that contain the author's nama, the title of the book, and the
number of books 30iG. The input data is shown Delow.
end ot file indicator.

NAME TTLE |NUMBER SOLD
BROWN BASIC 3000
DAVIS cosoL se7y
EVANS PASCAL 47
LAMS prLOT %e?

Output

Output is 2 book roysity report containing the suthor’s name, the title of the ook, the number of
copies 30id, and the royaity. If a book sells iess than 4,000 copiles, & royaity of 20 cents per book is
paid. If a book sells 4,000 copies or more, a roysity of 38 cents per DOOk is paid. After all records have
Deen processed, the total number of authors, the total number of books 3oid, and the total royalties
paid 10 ail suthors are to be dispiayed. The format of the cutput is illustrated below.

SCOK RQTALTIZS

ey T27.8 saLo ouc

SACwN - 7Y 1799 1159.72
0AVIS CosOL 4044 19¢7.33
Cuang PASCAL 9 1538.93
et PLOT 3887 $131.43

70TAL AJTHORS 4
TOTAL 8CO43 17962
TOTAL ROYALTIIS S807.7¢

DATA FILE : COMUPTER.DAT

''''' Basic 3999.0 TTTTTTTTTITET T e
Cobol 5679.0

Pascal 4397.0

Pilot 3867.0

-- DATA FILE : MATHEMAT.DAT

SMITH DISCRETE MATH 1000.0

YEE CALCULUS 3433.0

KINIK ALGEBRA I 10000.0

KINIK GEOMETRY 3001.0

GROUCHY MATH IS FUN 7012.0

SELLS PROBABILITY 1234.0

-- PROGRAM : BOOK.ADA

with text_io; use text_io; .
procedure book 1s ~=)

- generic instantiation of float_io s g Min =
package fltzo is new float_io(FLOAT); v -
package iio is new integer io(NATURAL); — .
use iio, fltio; Nz rd i

-- declare variables Y. ~
Name ¢ STRING(1..8); al ’
FileName ¢ STRING(1..12); —\—————*}/\“’4 % > &
Title : STRING(1..14); N V7
TotalAuthors : NATURAL := 0; M
Sam : FILE_TYPE; b A =
TotalBooks, Sold,Due,TotalRoyalties : FLOAT :=0.0; N, = ilwee,
begin -- book N Soe
-- prompt user for input file name | d
put_line("What is the name of the file you wish to open")
put("Type no more than 12 characters please! "); g CaldN
get(FileName); \\QJQ 3
put(FlleName), P
new_line; ﬁggr.iifjvo) e
-- open the input file : - T =
open(Sam,IN FILE, FéleName), . A
-- put headers ZT Noiavg. s sy s
put_line(" BOOK ROYALTIES"); | Medane. T e
new_line;
put_line(" NAME TITLE SOLD DUE");
new_line;
put_line("ececcecccccccccccccmccc et e "Vi o
while not end_of_file(Sam) loop T e ars Fa e
-- begin reading a record... V=T ‘i —_
get(Sulggl:), —_— - '
get(Sam,Title); Toon B~ = o
get(Sam,Sold); loas Bz v —_—
new_line; Leul L v
-- calculate royalities YV
if Sold < 4000.0 then \ Qug.i= V2@ >4, .
Due := 0.29 » Sold; -
else “
Due := 0.35 * Sold;
end if; Qég
-- update counter and accumulators v
TotalRoyalties := TotalRoyalties + Due; — T T
TotalAuthors := TotalAuthors + 1; N e
TotalBooks := Totalngoks +1801d; \ bakms .
-~ output information I
put(Name);put(" "); \\‘"fj};—**-

L

put(Title);put("” “);
put(sold, foro->a,a£t->2.exp->0),
put(Dus, fore=>8,aft=>2,exp=>0);
new_line;
--get name from next record
end loop;
close(Sam);
new line;
put{" Total Authors ");
put(TotalAuthors,width=>4);new_line;
put(" Total Books ");
put(TotalBooks, fore->8,aft->0,exp->0);
new_line;
put(* Total Royalties due $");
put(TotalRoyalties, fore=>8,aft=>2,exp=>0);
new_line;
put_line(" End of Job");new_line;
end book;

SHU> ada book.ada [ENTER)
SHU> ald book [ENTER]
SHU> a.out (ENTER]

What is the name of the file you wish to open
Type no more than 12 characters please! computer.dat
BOOK ROYALTIES

NAME TITLE SOLD - DUE

Brown Basic 3999.00 1159.71
Davis Cobol 5679.00 1987.65
Evans Pascal 4397.00 1538.95
Lamb Pilot 3867.00 1121.43

Total Authors 4

Total Books __ 17942.0

Total Royalties due §$ 5807.74
End of Job

SHU> a.out [BNTBR]

What is the name of the file you wish to open
Type no more than 12 characters please! mathemat.dat
BOOK ROYALTIES

NAME TITLE SOLD DUE

SMITH DISCRETE MATH 1000.00 290.00
YEE CALCULUS 3433.00 995.57
KINIK ALGEBRA 1 10000.00 3500.00

KINIK GEOMETRY 3001.00 870.29

GROUCHY MATH IS FUN 7012.00
SELLS PROBABILITY 1234.00

Total Authors 6

Total Books 25680.0

Total Royalties due § 8467.92
End of Job

2454.20
357.86

BASIC ARITHMETIC OPERATIONS = ACCUMULATING FiNAL TOTALS
ingtructions
A re00ft of the DYMENtS 107 8 GASOING CNEIGE CAZT SySIemM 1§ 10 Be oreoered. A pragram snouig
be designed
Input
INGut ONGISIS Of 28!08 rECONIS CONBIMING the CUSIOMEr AUMBEYr, the CuIIOMer name. the

Drevicus DAISNCE. the Current pUrchases. and ING DayMents Mage. The 1nput Gala 18 shown oeiow

2

CUSTOMER | CUSTOMER | PREVIOUS | CURAENT
NUMBER NAME SALANCE | PURCNHASES | PAYMENTS

201 ORAKE 100.28 1878 15.7¢
34 HOLLY 178.7¢ 2.2¢ 28
R o LoOMS 0.78 4.7 $0.2¢

4 RAMOS 138.78 17.28 17.78

Output

Output is & regort N payments due. The rSe0N i¢ 10 CONAIN the CUSIOMEr NaMe, the current
belance, and the minimum payment dus. The current Balance ¢ obtained by asding the prevous
Beiancs 10 the current purchases, and subtracting the peyments. The Minimum payment due i
oltained Dy taking 18% of the current Belance. After aif records Neve Deen Processed. the total
AUMBEr of CuSIoMers and the total Gurrent DIaNce of ail CuUSIOMArs 470 10 DO dlspiayed. The formet of
he output s usirated below.

— CREDIT CARD SUMNARY

- CUBTONER CURREMTY RINIRUN
[sSaLANCE PAYENT
= 11t S+
v 176. .
aanoe i i
139.28 21.04

T0TAL CUBTORERS ¢
T0TAL =~ CURRENT SALANCES ¢ 847.9

SASIC ARITHMETIC OPERATIONS — ACCUMULATING FINAL TOTALS
Ingtryctions

A r900M 18 10 BO DrGArEd 'Or & ITANE00MANION COMBANY 10 AEIENMING NG MiIgS 0O JBIION 0B18:Aed
fram each Dus Gnven 107 the G8Y. A OrOGram snou!d DO J08:gned

INBUL CONBISLE Of rOCONds AL CONMIN 1NG DUS SAVEr'S Name. WJONUKCALION AUMDEr. 1N Miles
driven, SNG the GaIIONS Of 3as0iine i80d. The 1nput GA1S I8 SAOWN DeiOw

DRIVER DAIVER
1) NAME MILES GALLONS
18 C DAVIS %0 -)
N R ROAMS 42 Q
4 Q GROLS 338 o
14 L JAMES 88 1?7

Output

Qutout 18 & Bus MISEGe report that CONAING the Griver's NAME, the Miles traveled, the gailons of
GAS0HNE used. and the Mies Der galion. The Mies Der Qalion is ObLaINGd Dy Gividing the galions used
IO the Muies traveied. After 8l recoras Rave BOON Drocesssd., the tOtal AuMBer of drivers. the total
M0 traveied. the 1018} Qalions used. and the Sverage Mies por gallon for ail Buses are to De
9i801ayeq. The format of the output 18 11ust?eted Below.

sus MILEACE

— oRgveER nILE3 CALLONS e
c oavis 233 2s)
& NOang PY] 2 11
¢ RGLS 3% 2 13
. JARES 288 %} 18

T0TAL ORIVERS 4
TOTAL NILES 1308
T6TAL GALLINS 118
MWERAGE PPC 11.06030

A 33R330 fimarzial assistasce teport s to de prepares ‘- t-e
veterans enrclied in & college. A Program should be designe:
t3 Produce the repore.

INPUT

snPut consists of records €sntaizizg the came of e student, a code
(code 1 1f che seudent 1s a nor-veteras; code 2 4f the studens tg & vezera- .
the ausder of units cthe student is earolled for, and the susber of desenie-ts.
Al. resiris vill contain either a cade] or 8 code 2, except for the end =
file rezard. The 19yt data is ghowe deiov.

STUOENT | ' -
| NovE . CODE UNITS ° DEPNDDSTS
| LOGUE R S S § T 0)
JAMES 2 ! 16 1

ORCIV A T & I 3
. MANLEY . 2 . 12 | b

SALL] 2 ' ls ' 3

-' J
oUTRLT

Output s a fimancial assistanze 2epor: of ail veterans. 1If che
ir2idual {s not & veteran (code 1), ttas their name {s not to azpear c-
the repare. 1! the individusl is o Veletan, 1is a part-time student

taking less than 13 urizs) and aas iess than ctve dependencs, thaa the
finanzial assiscance is $2C.09 PeT u2il befag taken. 1f che {adividus.
is & parc-time studeat and a veteras vith tvo or mcre dependents, the
financial as.istance is $21.00 per ueit deing taken. 1If the veteran is
& full-cime student (15 units or more) vith tve ef sore dependents, then
the financial assistance {s $30.00 per wmit being ceken.. If the veteran
1s & fulle-time student vith less tha= cve dependents, the fiasncial
assistance 1s $27.00 per uzit being tsces. After all records have been
prosessed, the tetal sumder of f.ll-ciae veterans., the tetal sumder of sar:-
time veteran students, and the t:tal .suust of finsncial assistaace
ghould be displayed. The format of tig output {9 Lllustraded delow.

- VITDWNS
FIMANCIAL ASSISTASCE

we STATUS sOrs AOUST .
" Ines nu e 1 $ 0

o nu roa 3 $ 430

NAKLEY PAXT TDE 1 $ 260

AL PART TDE s $ 32

TOTAL-TULL TDE VETEMAS STLODNTS 2

TOTAL-PARY TD@ VETTAAS STOONTS 2

TOTAL ADUYT § 14ss |

CSO050
Handout Set #5

Handout #5

Ada Subprograms (Procedures and Functions)

A subprogram is a sequence of code, that allows programs to be
structured in modular style. It also supports code reuse. Code that can
be used over again should be written as subprograms and housed in
packages. A complex problem can be broken down into smaller
manageable pieces.

All Ada subprograms, functions or procedures have the same basic parts.
(See next page). Identifiers that are used only within a subprogram
should be defined locally within the subprogram. Identifiers that are used
in the main procedure as well as in several subprograms should be defined
globally in the main subprogram. See text to review visibility rules.

A flowchart of a problem that use macro modules can be written as
subprograms that can be farmed to several programmers.

The major differences between Functions and Procedures are:

Functions

® return a value when invoked.

® are called within a statement or as part of another unit.

® contain at least one return statement in the executable body.
Procedures

® return zero, one or more values.

® are invoked by using the procedure name.

® Do not contain return statements

Parameter passing allows different values to be used when a subprogram
is invoked at different times. The different types of parameter modes
include in, out and inout. See text to review parameter modes.

Ada Procedure

Header -- identifies the procedure

types (enumerated)
array types
subtypes
Declaration Section constants
variables
*subprogram declaration (Functions or Procedures)
instances of generic packages or subprograms

Executable Body executable ada instructions or statements
subprogram calls

*Subprogram defined in the declaration Section
Function:

FUNCTION FuncName (Param1: in DataT1; Parm2: in DataT2)return Datal3 is
Formal Parameter List
LOCAL DECLARATIONS
BEGIN -- FuncName
-- executable statements
return ‘
END FuncName;

Procedure:

PROCEDURE ProcName (Parm1: in DataT1; Parm2:out DataT2; Parm3:in out Datal3) is
- Formal Parameter List .
LOCAL DECLARATIONS
BEGIN -- ProcName
-- executable statements
END ProcName;

3 Possible MODES for Parameter Lists

in The formal parameter is treated as a constant whose value is provided by the
corresponding actual parameter. This parameter cannot be changed by the
subprogram.

out The parameter is a variable whose value is assigned to the corresponding
actual parameter as a result of the procedure.

in out The formal parameter is a variable whose corresponding actual parameter

value can be referenced and updated.

Parameter Passing Modes

in
® has initial value

® read only
® cannot alter value
® default mode
® actual parameter can be an expression
out
® has no initial value
® write only
® must assign value
® actual parameter must be a variable
in out
® has initial value
® read and write
® can alter value

® actual parameter must be a variable

- - - T - - - - s - - D . - - - - - - - - - - - - - . - - -

-- FILE : TAXES.ADA

- This procedure declares a function called taxcalc that

-- calculates the tax return, if you give it 4 PARAMETERS:

- 1. the TAXABLE IN of a person(s)

- 2. the AMOUNT of base taxes you need to pay for that
- income range

- 3. the PERCENTAGE amount in decimal format

-- 4. the Amount over value

-- It will then calculate your taxes and return that amount!

with text_io; use text _io;
procedure taxes is
Mr,Mrs,MrTax,MrsTax,JointTax : float;
Temp : float;
package fltio is new float_io(float);
use fltio;
function taxcalc(Income,Amt,Percent,Over:float) return float is
taxamt : float;
begin -- taxcalc
taxamt := Amt + Percentr(Income-Over);
return taxamt;
- end taxcalc;
begin -~ taxes
put("Enter Mr. Doe’s Taxable Income => §");
get (Mr);put (Mr,fore=>6,aft=>2,exp=>0);new llne,
put("Enter Mrs. Doe’s Taxable Income => $%);
get(Mrs);put(Mrs, fore=>6,aft=>2,exp=>0);new _line;
-- calc taxes 1nvok1ng functlon taxcalc
MrsTax := TAXCALC(Mrs,2190.0,0.32,20000.0);
MrTax := TAXCALC(Mr,1630.0,0.28,18000.0);
JointTax :=TAXCALC(Mr+Mrs,3960.0,0.29,36000.0);
-- output returns
put("Mr. Doe’'s Separate Tax return will be §");
put (MrTax, fore=>7,aft=>2,exp=>0);new_line;
put("Mrs. Doe’s Separate Tax Return will be $");
put(MrsTax,fore=>7,aft=>2,exp=>0) ;new _line;
put("Their joint tax return will be => $")i:
put(J01ntTax fore=>7,aft=>2,exp=>0) ;new llne,
=- decide whlch way to file
if MrTax + MrsTax > JointTax then
put_line("File Joint Return");

else
if MrTax + MrsTax < JointTax then
put_line(“File Separate Returns");
else
put_line("File anyway you like!");
end if;
end if;
new_line;

end taxes;

Enter Mr. Doe’s Taxable Income => $§ 18750.0

Enter Mrs. Doe’'s Taxable Income => § 20312.0

Mr. Doe’'s Separate Tax return will be § 1840.00
Mrs. Doe’s Separate Tax Return will be § 2289.84
Their joint tax return will be => § 4847.98

File Separate Returns

FILE : paint.ada

This main procedure illustrates the use of subprogranms.

It contains a function and 3 procedures in the main declaration
area of the main procedure. S. Honda 3/93

- A R D P D D WD W U WD D D D WD D D WD D A G AP P D > D WD R R D WD WD D P P S R D G W S D D P, > . W W .

with text_io; use text_io;
procedure paint is

package fltio is new float_io(float);
use fltio;
-- global declarations
length,width,area : float;
costpergal,no_gal,costpaint : float;
function painta(wid,len:in float) return float is
-- local declarations
height : constant float := 8.0; -- height of room 8 ft.
walll,wall2,ceiling,totalsgft : float;
begin -- painta
walll := lentheight;
wall2 := wid*height;
ceiling := wid*len;
totalsqft := 2,0*(wall2 + walll) + ceiling;
return totalsqft;
end painta;
procedure getdata(i,w,costpergal : out float) is
begin -- getdata
put("Enter length of room in ft. ==> ");
get(l); new_line;
put ("Enter width of room in ft., ==> ");
get(w); new_line;
put ("Enter cost of paint per gallon ==> ");
get (costpergal); new_line;
end getdata;
procedure calc(area,costpergal: in float; no_gal,costpaint
¢ out float) is
== local declaration
coverage : constant float :=233.0;
temp : float;
begin -- calc
temp := area/coverage;
temp := float(integer(temp + 0.5));
no_gal := temp;
costpaint := temp*costpergal;
end calc;
procedure print(w,1,area,no_gal,costpaint:in float) is
begin -- print
put_line("The paint used to paint the room covers");
put_line("233 sqft. The room to be painted is a");
put_line("standard 8 feet high room!"); new_line; -
put ("The length of room is ");
put(l,2,1,0);put_line(" ft");
put("The width of room is ");
put(w,2,1,0);put_line(" ft");
put ("The area to be painted is ");
put(area,4,1,0);put_line(" sqft.");

f

put("The cost of paint is $");
put(costpaint,4,2,9) ;new_line;
put(“The no of gallons to buy : ");

put(no_gal,2,0,0);nevw_line;

end print;

begin -- paint

getdata(length,width,costpergal) ;
area := painta(width, length);

calc(area, costpergal,no_gal,costpaint);
print(width,length,area,no_gal,costpaint);

end paint;

- R R R D S T WD Y W D TR D G YD OB D D R G D G A D WD DGR D ED R G an o G D W W

- EXECUTION RUN OF PROGRAM

- D G D P A e P D D S AR S D W D D P Sh G T D D G e D G Eh P G O G G G aE G D R W e .

shu.sacredheart.edu > ada paint.ada

shu.sacredheart.edu > ald -o paint.exe paint

shu.sacredheart.edu > paint.exe

Enter length of room in ft. ==> (.
Enter width of room in ft. ==> [,
Enter cost of paint per gallon ==> (((.
The paint used to paint the room covers
233 sqft. The room to be painted is a
standard 8 feet high room!

The length of room is 16.0 ft

The width of room is 10.0 ft

The area to be painted is 420.0 sqgft.
The cost of paint is § 20.00

The no of gallons to buy : 2.0

shu.sacredheart.edu > paint.exe

Enter length of room in ft. ==> i.v
Enter width of room in ft. ==> ..

Enter cost of paint per gallon ==> (0 ¢
The paint used to paint the room covers
233 sqft. The room to be painted is a
standard 8 feet high room!

The length of room is 1.0 ft

The width of room is 1.0 ft

The area to be painted is 33.0 sqft.
The cost of paint is § 10.00

The no of gallons to buy : 1.0

-- COMPILES
-- LINKS
-- RUNS EXECUTABLE FILE

-=- RUNS EXECUTABLE FILE

File : COMPUTER.DAT
BROWNBASIC 100
WHITECOBOL 6000
GREENRPG 1000
EVANSADA 6080

File : BOOK.ADA L)
-~ This program is the book royalty problem that has been

-- modularized. Note the three procedures (Headers, Loops,
-~ PrintTotals).

with text_io; use text_io;

procedure book is
package iio is new integer_io(integer):
package fltio is new float_jo(float):
use iio,fltio;
TotalAuthors,TotalBooks ¢ natural :=0;
TotalRoyalties : float :=0.0;

procedure Headers is
begln ~- Headers
put_line(" Book Royalties");
new_line;
put(" Name Title ")s
put_line(" Sold Due"):;
new_line;

put_line("-==-=e-==== "),
end Headers;
procedure Loops(TotalAuthors,TotalBooks:out natural;
TotalRoyalties: out float) is
ta,tb,Sold : natural := 0;
due,tr : float := 0.0;
Name : string(1..5);
Title : string(1..6);
Sam : file_type:
begin -- Loops
- open(Sam, in_file, "computer.dat");
while not end of_file(Sam) loop
get(Sam,Name):
get (Sam,Title):
get (Sam,Sold);
new_line;
if Sold < 4000 then
Due := 0.29 * Float(Sold):
else
Due := 0.35 * Float(Sold):;
end itf;
tr := tr + Due;
ta := ta + 1;
tb := tb + Sold;
put (Name) ;put (" "
put(Title) ;put(”
put(Sold):
put(Due,8,2,0);
nevw_line;
end loop:

o -

e’ wmy
-e

close(Sam) ;
TotalAuthors := ta;
TotalRoyalties := tr;
TotalBooks := tb;
end Loops;
-- Note the parameters passed have different names.
procedure PrintTotals(TA,TB: in natural; TR: in float) is
begin --PrintTotals
nevw_line;
put (" Total Authors ");
put(TA,width=>4) ;new_line;
put (" Total Books Sold ")
put (TB) ;new_line;
put (" Total Royalties due $");
put(TR,8,2,0) ;new_line;
put_line("End of Job!"):;
end PrintTotals:;
begin -- book
Headers;
Loops (TotalAuthors,TotalBooks,TotalRoyalties);
‘PrintTotals(totalAuthors,TotalBooks,TotalRoyalties):
end book;

Execution Run of Book.exe:

Book Royalties

Nane Title Sold Due

BROWN BASIC 100 29.00
WHITE COBOL 6000 2100.00
GREEN . RPG 1000 290.00
EVANS ADA = 6080 2128.00

Total Authors 4

Total Books Sold 13180
Total Royalties due $ 4547.00
End of Job!

syntax:

Ada Executable Statement

‘for loops - Allows for repetition. It automatically increments with a starting value,

to an ending value and performs a pre-test.

for ForVariable in _Initialvalue .. _Endingvalue loop
Statement(s) ;

end loop;

Note: ForVariable does not need to be declared. It will cease to exist after endloop.

ForVariable will take on the value of Initialvalue. Initialvalue and Endingvalue
must be discrete scalar constant values, expressions or variables. It may not be
any other data type such as real or composite. ForVariable, Initialvalue,
Endingvalue must be of the same data type.)

Examples:

1.

-- prints message in put_line 10 times

for i in 1..10 loop '
put_line("I love to program in Ada!");

end loop;

-- Prints 3 and 4 Times table
for i in 3..4 loop
put("Set *);
put (i);
put_line(" times table “);
for j in 1..12 loop

= ' put(j); put(" times *); put(i); put(" = "); put(i*j); new_line;

end loop;
new_line;
end loop;

type food_type is (hamburger, sushi, fries, saimin, hotdog);
food : food_type;
package food_io is new enumeration_io(food_type); use food_io;

for food in hamburger..fries loop
put_line(food);
end loop;

|

with text_io; use text_io;

procedure ascii is
c:integer;

begin -- ascii

put_line("This is print some of the ASCII characters from");

put_line(" the space character to the ~");
new line;
c:=0;
for i in ' ‘..’"' loop
put(1);
put(u u);
1f c<=10 then
Cisc+];
else
c:=0;
new_line;
end if;
end loop;
new_line;

end ascii ;

B R e e e i e el e e L L

This is print some of the ASCII characters from
the space character to the ~

N - T T G B
s, - « / 0 1 2 3 4 5 6 17
8 9 : ; < = > 2 @ A B C
D E F G H I J KL MNO
P Q R S T U V W X Y Z |
N] ° ‘*'a b c d e £ g
h i 3 Kk 1 m n o q r s
t uw v w x y z | T | -

with text_io;use text_io;
procedure ' ttnth tablo is

- Example of usinq boolean variables; I/0 boolean variables
-- and of nested loops

-= declaration of variables

P.q: boolean,
-- generic instantiation of generic package enumeration_io

package boolio is new enumeration_io(boolean);
use boolio;
begin --truth_table

put(® p q p or q ")i

put(“p xor q p and q") ;

new_line;

put (" ")

new line(Z),
for p in boolean loop
for q in boolean loop
put(p,6);
put(q,9);
put(p or q,9);
put(p xor q,width=>9);
put(p and q,width=>9);
new_line;
end loop;
end loop;
end truth_table;

FALSE FALSE FALSE FALSE FALSE
FALSE TRUE TRUE TRUE FALSE
TRUE FALSE TRUE TRUE FALSE
TRUE TRUE TRUE FALSE TRUE

CSO050
Handout Set #6

Handout #6
User Defined Exceptions

A user defined exception is an identifier that is declared as an exception
type. It is an identifier that is used in exception handling. It is an error
condition explicitly raised:
Exception Handler

® is used to handle unanticipated runtime errors

® determines the problem and takes appropriate action

® is embedded in Ada bodies

® is placed at the end of a subprogram, block or package body

® s similar to the case statement

Syntax:
declare
declarations ;
begin
exception
when choices = > _statement(s] ;
- when choices = > _statement(s) ;
“end;
Example:
declare
Number : integer range 0..100;
begin

put("Enter value from O to 100");
get(Number); new_line;
exception
when constraint_error = >
put_line("Only values O to 100");
end;

Other Location of Exception Handlers

procedure Main is

_declaration(s) ;
begin -- Main
_Statement(s) :

exception

_exception handler ;
end Main;

package _PkgName is
A visible declaration(s)
end _PkgName ;
package body _PkgName is
hidden declaration(s] _;
begin
-- code
exception

exception handler ;
end _PkgName ;

Built-in Exceptions
® Constraint_Error
® Numeric_Error
® Storage_Error
® Program_Error
® Data_Error

® Task_Error

O G OGS D P R D OB W AR D D S W AR ED e S G R I D D D WP D D S D D D D G W WD YT wn T G VE W WP WP G WS WL I D G W G A W e e e

-- EXAMPLE OF EXCEPTION HANDLING

- Note the declaration of user defined exceptions too_old,

- and too_young. The user may define his own exceptions or

- use predefined ones such as constraint _error, program_error,

- storage_error, numeric_error, data_error. (Check reference ‘
-- manuals to determine how error is treated your implementation.

with text_io; use text_io;
procedure excep is
-- declaration of a subtype called agetype
subtype agetype is integer range 1..120;
-- declaration of variables
age ¢ agetype;
too_young,too old : exception;
-- instantiation of integer_io
package iio is new 1nteger 1o(agetype) ;use iio;

begin -~ excep
loop

begin -- local block
put ("Enter your age => ");
get(age); put(age); new line;
-- raising user defined exceptions

if age<12 then

raise too_young;
elsif age >80 then

raise too_old;
end if;

put_line("Just the right age...");

put line("Just the person I need...");
exit; -- exit loop
exception

when constraint error =>

put_ line("This is out of range!");
when_data _error =>

put_ line("This is the wrong data type “);
when too young =>

put_ llne("You are too young to smoke!");
when too old =>

put_line("You are too old for sky diving!");
when others =>

put_line("I give up!");

end; -~ local block

end loop;
put_line("This is the end!");
nevw_line;

end excep;

- EXECUTION RUN OF EXCEP.ADA

Enter your age => 0 This is the wrong data type
Enter your age => 121 This is the wrong data type
Enter your age => 95

You are too old for sky diving!

Enter your age => 5

You are too young to smoke!
Enter your age => 28

Just the right age...

Just the person I need...
This is the end!

CS050
Handout Set #7

Handout #7

An array is a composite object consisting of components of the same
subtype. Its composite value consists of the values of its components.
To reference a component of a one-dimensional array object, one uses the
name of the array object appended with an index value enclosed in
parentheses. The index is analogous to subscript. Any discrete type can
be used as an index or subscript.

Syntax :

type _ArrayType is array(beginrange .. _endrange of datatype;

where beginrange and endrange are discrete types.

or

ArrayName_ : array(Qeginrangg— .. _endrange of' _datatype ;
Examples:

-- An one dimensional array of 5 elements
-- Vector(1), Vector(2), Vector(3), Vector(4), and Vector(5)
type VectorType is array(1..5) of integer;
Vector : VectorType;
or
Vector : array(1..5) of integer;

-- 3000 elements of strings whose length is 25 characters and
-- Part(1000), Part(1001), Part(1002) .. Part{(3999)

type Part_Id is range 1000..3999;

type Part_Type is array(Part_Id) of string(1..25);

Part : Part_type;

Two dimensional array:

-- Matrix contains 3 rows and 5 columns of data elements

-- Matrix(1,1) Matrix(1,2) Matrix(1,3) Matrix(2,1) Matrix(2,2) ..
type MatrixType array(1..3,1..5) of float;

Matrix : MatrixType ;

~l CSsph

FILE : MAIN.ADA
This main procedure reads from a sequential file called "STUDENT.DAT".
The data is read into several arrays (NAME, STATUS JOB, and WEIGHT).
After closing the file, the average weight is calculated and the
maximum weight is found. The appropriate student, is identified also.

with text 1o, use text_io;
procedure main is

-=- variable declaration
max : positive := 15;
-=- type declaration
type jobtype is (Navy _Captain,Actor,Hotel Executive,Pilot,
Lawyer, Opera _Singer,Polo Player),
type statustype is (freshmen, sophomore, junior,senior) ;
type jobary is array(1l..max) of jobtype;
type statusary is array(l..max) of statustype;
type weightary is array(l..max) of float;
type nameary is array(l..max) of string(1..8);
~- instantiation of generic packages for I/0
package jobio is new enumeration 1o(jobtype),
package statusio is new enumeration _io(statustype);
package fltio is new float 1o(float),
use jobio,statusio,fltio;
-- declaration of variables

status ¢ statusary;
job ¢ jobary;
weight : weightary;
name ! nameary;
ave,maximum, total : float;
i,no_rec,rec : positive;
joe : file_type;
begin -- main
1:=1;
put_line(" People from file:");
put_line("----~eeeccc e e ")

open(joe,in _file,"student.dat");
while not end of file(joe) loop
get (joe,name(i));
get(joe,weight(1i));
get(joe,Jjob(i));
get(joe,status(i));
skip _line(joe);
put(name(i)); put(* ");
put(status(i),12);
P“t(job(i).17):
put(weight(i),5,0,0);
new_line;
no_rec:=i;
i:=i+1;
end loop;
close(joe);
-= Calculate the Average weight
total := 0.0;
for 1 in 1..no_rec loop
total := total + weight(i);
end loop;
ave := total/float(no_rec);

-« Print the average weight

put(®~=-

The average veight is *);

put(ave,7,2,0) ;new_line(2);

== PFind the Haxinul from list
maximum := weight(l);
rec:=1;
for i in 2..no_rec loop

if weight(i) > maximum then

naximum := weight(i);

rec

end if;

end loop;
-= Print our a list of names and weights
for i in 1..no _rec loop
put (name(i));

put (weight(i),7,0,0) ;nevw_line;

i= i;

end loop; new_line;
-- Print out the maximum welght & name

put(”... The maximum weight is ");

put (maximum,7,0,0); new_line;
put(*... It belongs to ");

put(name(rec)); new_line;
end main;

DATA

FILE :

STUDENT.DAT

Louis

Mary
Tyron___
Todd__

___152.0
Lucinda_162.0
Alfred 125.0
Forester217.0
172.0
115.0
105.0

Actor Senior
Pilot Sophomore
Opera_Singer Freshmen
Polo Playcr Freshmen
Lawyer Junior
Hotel_Executive Junior
Navy_ Captain Sophomore

EXECUTION OF MAIN.ADA

People from file:

Louis
Lucinaa
Alfred

Forester

Mary

Tyron__
Todd

--- ~The

Louis
Lucinda_
Alfred
Forester
Mary
Tyron__
Todd

- o gp -

—_—

«++ The maximum weight is
.+« It belongs to Forester

SENIOR ACTOR
SOPHOMORE PILOT
FRESHMEN OPERA_SINGER
FRESHMEN POLO_PLAYER
JUNIOR LAWYER
JUNIOR HOTEL_EXECUTIVE
SOPHOMORE NAVY_CAPTAIN
average weight is 149.71
152.0
162.0
125.0
217.0
172.0
115.0
105.0
217.0

152.0
162.0
125.0
217.0
172.0
115.0
105.0

- D e o S @ WD G En NS WD TP D D A D P T W G D S P PSS G G WD T G G Ep S A G G e Y W W

UATA FILE : IN.DAT

101Ross actor 99.9 34.6
102van opera_singer 65.6 89.43
103Lynn lawyer 56.1 89.43

110Susan stunt_man 56.45 100.0

FILE : MAIN3.ADA

This is an example of a main procedure that invokes
several procedures and functions. It also uses array
types, subtypes and enumerated types, reading data

from a data file. S. Honda 10/9/93

vith text_io; use text_io;
procedure main3 is

-- declaration of enumcration type status_type <:EE;;:>
type stat_type is (actor, lawyer,opera_singer,stunt_man); = _

-- generic instantiations for I/0O \ﬁ?;__;;s
package stat_io is new enumeration_io(stat_type); v
package n_io " is new integer_ io(natural); . T T
package f io is new float io(float); Vel T
use stat.: 10, n_io, f_io; A

-- declaration of constant max

max : constant natural := 300; LS

-- declaration of array types '
type id_ary is array(l..max) of natural; Yzz;if’j i
type name_ary is array(1..max) of string(1..5); SR S
type status _ary is array(l..max) of stat_type;
type grade_ary is array(l..max) of float; (ﬁj’,

-- variable declarations "<’ -
name ! name_ary; -
ia ¢ id_ary; /’T“;f
status : status_ary; ‘<L;—>;>
art,math : grade_ary;
n : natural;

D D S T WD WO G P D AP DGR AP D D R D G D R D G T G A D S SR TP R e e G D S S D D S W W Y W -

procedure getdata(id: out id_ary;name: out name_ary; status :
out status_ary; art,math : out grade_ary; n: out natural) is
sam : file type,
i : natural := 0;
begin -- getdata
open(sam,in_file,"in.dat");
while not end_of_file(sam) loop
ie=i+l;
get(sam,id(i));
get(sam,name(i));
get (sam,status(i));
get(sam,art(i));
get(sam,math(i));
end loop;
n:=ji;
close(san) ;
put_line(“closing file....");
end getdata;
procedure printlist(name:in name_ary;n:in natural;
grade:in grade_ary;status:in status_ary;id:in id_ary) is
begin --printlist
put_line(" GRADE LISTING “);

put_line("ID Name Grade Status");
put line(" cvececnmcccccccan- ");
for j in 1..n loop
put (id(j) ,width=>3) ;put (" ") ;put(name(j));
put(qrade(j).6.1.0);put(" ");
put(status(j) ,width=>8) ;new_line;
end loop;
new_line(2);
end printlist;
function calc_avg(grade:in grade_ary;n:in natural) return float is
temp : float := 0.0;
begin -- calc_avg
for i in 1..n loop
temp := temp + grade(i);
end loop;
temp := temp/float(n);
return temp;
end calc_avg;
begin -- main3
getdata(id, name,status,art,math,n); -- invoke getdata

put_line(" Art Grades")

printlist(name,n,art,status, 1d), -- invoke printlist
put_line(" Math Grades")
printlist(name,n,math,status, id), -- invoke printlist

put ("Average art score is %);

put(calc_avg(art,n),5,2,0);new_line; -- invoke calc_avg

put ("Average math score is ");

put(calc_avg(math,n),5,2,0);new_line; -- invoke calc_avg
end main3;

- D R - - D D D D D D D e R D D G T R D G D D G D e - ——— -

EXECUTION RUN OF MAIN3.ADA
closing file....
Art Grades
GRADE LISTING
ID Name Grade Status

- - D S P D W .-

101 Ross 99.9 ACTOR
102 Van 65.6 OPERA_SINGER
103 Lynn 56.1 LAWYER

110 Susan $6.5 STUNT_MAN

Math Grades
GRADE LISTING
ID Name Grade Status

101 Ross 34.6 ACTOR
102 Van 89.4 OPERA_SINGER
103 Lynn 89.4 LAWYER

110 Susan 100.0 STUNT_MAN

Average art score is 69.51
Average math score is 78.37

- FILE : MAIN4.ADA

vith text_io; use text_io;

procedure maind is
type number ary is array(1..100) of integer;

numbers : number_ary;
choice : character;
no_rec : positive;

package iio is new inteqcr io(integer);use iio;

procedure nenu(choice.in out character) is
begin -- menu

nev_line;

put (" (I) Input values ")
put_line(" (S) Sort values");

put (" (M) Find the Minimum®);
put_line(" (L) List Values®) ;

put iine(" (Q) Quit this program");
new_line;

put(*wWhich of the following do you wish to do?");
get(choice) ;put(choice) ;new_line;
end menu;
procedure Input(numbers: in out number_ary; no_rec: out positive) is
i:positive:=1;
begin =--Input
put ("Enter integers => ")
get (numbers(i)) ;new_line;
while numbers(i) /= -999 loop
i:= j+1;
get (numbers(i));
end loop;
no_rec:=i-1;
end Input;

procedure sort(numbers: in out number_ary; no_rec: in positive) is
begin -- sort
put_line("...in development");
endnsort;
function minimum(numbers: in number_ary; no_rec: in positive)
return positive is

-~ local declaration

min : positive:=1;

begin =--minimum
put_line("... in develcopment");
return min;

end nininun,

- a an - e .- o - e -y - - - o -

procedure PrintList(nunbers in number_ary; no_rec: in positive) is
begin -- PrintList
put_line(" List of values");
put line("w~ererercccena- ");
for i in 1..no_rec loop
put (numbers (i)) ;new_line;
end loop;
end PrintList;

begin -~ Maingu

loop

Menu(choice); -- Invoke Subprogram MENU

case choice is
when ‘I’ i’ => Input(Numbers,no_rec);
when ’S’ s’ => Sort(Numbers,no_rec);
when ‘M’ ‘m’ => put(minimum(Numbers,no_rec));
when 'L’ /1’ => PrintList (Numbers,no_rec);
when ’Q’ ’‘q’ => put_line(".... Goodbye!");

exit; -- exit loop
when others => put("... wrong choice dumny!");
new_line;
end case;
end loop;
end maing;
- EXECUTION RUN OF MAIN4.ADA
(I) Input values (S) Sort values
(M) Find the Minimum (L) List Values

(Q) Quit this program

Which of the following do you wish to do? i
Enter integers =>

(I) Input values {(S) Sort values
(M) Find the Minimum (L) List Values
(Q) Quit this program

Which of the following do you wish to do? s
...in development

(I) Input values (S8) Sort values
(M) Find the Minimum (L) List Values
(Q) Quit this program

Which of the following do you wish to do? 1
List of values

34 —
-4
(0]
100
(I) Input values (S) Sort values
(M) Find the Minimum (L) List Values

(Q) Quit this program

Which of the following do you wish to do? n
... wrong choice dummy!

(I) Input values (S) Sort values
(M) Find the Minimum (L) List Values
(Q) Quit this program

Which of the following do you wish to do? q
««+.. Goodbye!

CS050
Handout Set #8

Handout #8

Functions and procedures may be written as separate units, compiled,
and used again and again by other subprograms. The following are
examples of external subprograms that are called by another programs.
Note context clause with that makes packages or subprograms visible.
Use can only be used by packages.

Note two-dimensional array airline flight problem and is associated Ada
program that uses logical two-dimensional variables.

- FILE : MAIN.ADA
-= This is an example of an external subprogram that is called by
- another program called MAIN.

procedure swap(a,b:in out integer) is
-~ declaration of local variables
temp : integer;
begin -- swap

temp := a; -- assigns a to temp
a := b; -- assigns b tc a
b := temp; -- assigns temp to b
end swap;
- FILE : SWAP.ADA

- This is an example of using an external subprogram procedure
- called SWAP that exits on secondary storage.
with swap,text io; -- make procedure swap and package text_io available
use text_io; -- Note you can only USE packages!
procedure main is
X,Y : integer;
package iio is new integer_io(integer);
use iio;
begin -- main
-=- prompt user for 2 integers
put_line("Enter an integer for x ==> %);
get(x) ;new_line;
put_line("Enter another integer for y==> ");
get(y) ;new_line;
-- invoke procedure swap
swap(x,y) ;
put ("Value of x is ==> ");put(x);new_line;
put("Value of y is ==> ");put(y);new_line;
end main;

COMPILATION OF MAIN AND SWAP, AND EXECUTION R
sacredheart.shu>_ada swap.ada main.ada
sacredheart.shu> ald -o main.exe main
sacredheart.shu> main.exe

Enter an integer for x ==> -105
Enter another integer for y ==> 200
Value of x is ==> 200

Value of y is ==> -105

with text_io; use text_io;

procedure sqrt is
x:float;
peckag tltio is new float_ijo(float);
use fltio;

function sqr(x:in float) return float is
root:float:=x/2.0;

begin -- 32
hile abs(x-root-root) > 2.0 » x » 0.000007 loop
root:=(root + x/root)/2.0;
end loop;
return root;
end sqr;
begin -- sqrt
put("enter nunber to find the sqrt of ");
get(x);put(x,5 0),new line;
put("The Square Root is ");
put(sqr(x),5,€,0);new_line;
end sqgrt;

- - = e P R e . D P P G S G WP G G WD WD R R G R S OE WD @ UL G GR GR T D D D AR G R R CR D WP R WY T G T D W SR D OB D OB G T e

SHU> a.out
enter number to find the sqrt of 4.0
The Square Root is 2.000000

SHU> a.out
enter number to find the sqrt of 26.459999
The Square Root is 5.143949 -

SHU> a.out
enter number to find the sqrt of 145.678894
The Square Root is 12.069752

SHU> a.out)
enter number to find the sqrt of 1044.0
The Square Root is 12.000000

- This is an external function called PILE s SQR ADA
- It vas created as a separate file and compiled.

function sqr(x :in float) return float is
root:float :=x/2.0;
begin -- sqr
vhile abs(x-root*root) > 2.0 ¢ x * 0.000007 loop

root := (root + x/root)/2.0;
end loop;

return root:;

- This is a main program that makes the function SQR.ADA
- available with the context clause WITH. (Note you can
- only USE packages.)

with text_io, sqr.use text_io;
procedure mainsqr is
x: float;
package fltio is new float_io(float);
use fltio;
begin -- mainsqr
put ("enter number to find the sqgrt of ");
get (x) ;put(x,5,6,0) ;new_line;
put ("The square root is ");
put(sqr(x),5,2,0) ;new_line;
end mainsqr:

COMPILATION AND LINKING OF MAIN PROGRAM.

shu.sacredheart.edu> mainsqr.ada -- compiles mainsqr
shu.sacredheart.edu> ald -o mainsqr.exe mainsqr -- links mainsqr

EXECUTION RUNS OF PROGRAM MAIINSQR.ADA

shu.sacredheart.edu>mainsqgr.exe
enter number to find the sqgrt of 12.540000
The square root is 3.54

shu.sacredheart.edu>mnainsqr.exe
enter number to find the sqrt of 4.000000
The square root is 2.00

10 An airline flies between sux citizs Whether o not there is s direct flight from
one city to another 15 indicsted in the follswing table:

To
! 2 3

&
L]

From

Oy WWN
T LEL L
S L L
"L LEELE]
" TLELLL’
T ECLLL
LLLLEE

On the left and across the top are the numbers of the cities If there is s T at
the intersection of a row and column, there is a direct flight from the city
marked on the left wo the city indicated at the top An F indicates that there is
no direct flight between the two cities.

The information for this table is recordad in the first six records of a file
Recorded in each record is the data for ome row of the table. Following the ta-
ble data is one record for sach customer with the customer’s number and his or
her request for s fight pattern. The flight pettera indicates the cities between
which the customer wishes to 8y. For example, s patern of 13426 indicates
that the customer wishes to fly from city I o city 3, then from city 3 to city 4.

then to city 2, and finally o city 6. The maximum number of cities in & flight
pattern is five. If the customer has fewer than five cities in his or her pattern,
the remaining numbers are ssro. Thus a pattern of 62000 indicates that the
customer wishes to fly from city 6 to city 2 and does not wish to continue be-
yond that.

Write sn Ada_ . program to read the data for the fight table. Print the
table’ with appropriate headings. Then determine if each customer’s requested
flight pattern is possible. Print the customer’s aumber, his or ber requested
flight pettern, and a statement of whetber or not a ticket may be issued for th
desired pattern.

To test the program use the dats in the previous flight table and the follow-
ing customer data:

Customer number Flight patiern

10123 13426
11308 62000
13427 42>
18211 82500
13006 M212
20831 68428
21478 32000
22138 43621
24108 13424
U218 stan
25009 34250

- DATA PIL! CUST DAT

10123 1 3 4 2 3
13427 4 23 2 0
11305 5 2 00 O
18211 52 0 0 O
12342 6 2 0 O 0
- DATA FILE TABLE DAT

FALSE TRUE TRUE FALSE FALSE TRUE

TRUE FALSE TRUE FALSE FALSE TRUE .
FALSE FALSE FALSE TRUE FALSE FALSE

FALSE TRUE FALSE FALSE TRUE FALSE

FALSE TRUE FALSE TRUE FALSE FALSE

FALSE TRUE FALSE FALSE TRUE FALSE

- This Main procedure called ARRAYS.ADA uses 2 two-d1mensional
- arrays. It reads data from two sequential files, a CUST.DAT
- file and a TABLE.DAT file to determine if a ticket should be
- issued, depending on whether or not the flight pattern is

- available. . S. Honda 11/92

- D R P D D D D W Y R D EP S TR D G D e D G e D R S D G AL D P TS S E D D D WP G GD W T T W AR D

with text_io; use text_io;
procedure arrays is
-- declaration of types
type arytype is array(1..6,1..6) of boolean;
type custary is array(1..50) of natural;
type fltpat is array(1..50,1..5) of natural;
-=- instantiation of generic packages
package iio is new integer_io(natural);
package boolio is new enumeration _io(boolean);
use iio, boolio;
-=- declaration of variables

cust : custary;
table : arytype;
fit —: fltpat;

no_of_rec: positive;

== This procedure reads data from 2 files
procedure read(cust : out custary; flt : out fltpat;
table : out arytype; no_of_rec : out positive) is

-=- local declarations
joe : tile type;
i,3 : positive:=1;

begin -~ read
open(joe,in_file,"Cust.dat");

while not end_of_file(joe) loop -- get data from
qct(joc.cust(i)). -- file "CUST.DAT"
for j in 1..5 loop -=- gtore cust id in
get(joe,£f1t(i,3)); == array CUST(i) and
end loop; -=- flight pattern in
i:=i+1; -~ array FLT(i,J)
end loop;

no_of_rec:=i-1;

close(joe);

open(joe,in_tile,"table.dat"); -- get data from
for r in 1.6 loop -= file "TABLE.DAT"

for c in 1..6 loop -- and store data i
get(joe,table(r,c)); -=- array TABLE(r,c)
end loop;
end loop;
close(joe);
end read;
-=- This procedure prints out data read from file
procedure print(cust: in custary; flt:in fltpat;
table:in arytype; no_of_rec:in positive) is
begin -- print

new_line;
put_line(“Customer Flight");
put_line(" Number Pattern”);
put_line(" "):
for i in 1..no_of_rec loop

put (cust(i));put(" ")i

for 3 in 1..5 loop
put(flt(i,j),width=>1);
end loop;
new_line;
end loop;
new_line(2);
put line(" Flight pattern between 6 cities")
put_ “line(" TO%) ;
put(” -"):
for i in 1..6 loop
put(i);
end loop;
new_line; put(" ");
put_line("=--=-=c-eccccmccceceemcccmecmea oo ")
for i in 1.. 6 loop
if i=4 then
Put("FROM ") ;

else
put(® *)i
end if;
put(i);put(" *);
— for j in 1..6 loop
- put(table(i,j));put(’ *);
end loop;
new_line;
end loop;
end print;
-= This procedure prints out customer requests and ticket message
procedure request(cust: in custary; flt: in fltpat;
table:in arytype; no_of_rec: in positive) is
possible:boolean;
k:integer;
begin -- request
new_line(2);
put("Cust ID Flight Pattern®);
put_line(* Message®);
put_line(" ——-t
for i in 1..no_of_rec loop
put(cust(i));put(™ *);
possible:=true;
for §J in 1..5 loop
put(fit(4,]),.3);

end loop;
put(® *);
k:=1; -~ determine if flight is possibl

while (k<5) loop
if flt(i,k+1)/=0 then
if not table(flt(i,k),flt(i,k+1)) then
possible:=false;
end if;
end if;
k:=k+1;
end loog;
if possible then
put_line(" issue ticket");

else
put_line(" ** no ticket ##%);
end if;
end loop;

end request;
begin -- arrays
read(cust,flt,table, no_of_rec);
print(cust,flt, table,no_of rec);
request (cust,flt,table,no_of_rec);
end arrays;

- RUN OF ARRAYS.ADA
Customer Flight
Number Pattern
10123 13423
13427 42320
11305 52000
18211 52000
12342 62000

Flight pattern between 6 cities
- TO
1 2 3 4 S 6

FALSE TRUE TRUE FALSE FALSE TRUE
TRUE FALSE TRUE FALSE FALSE TRUE
FALSE FALSE FALSE TRUE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE FALSE
FALSE TRUE FPALSE TRUE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE FALSE

FROM

AWM

Cust ID Flight Pattern Message

10123 1 3 4 2 3 issue ticket
13427 4 2 3 2 0 ** no ticket =#
11308 s 2 0 0 O issue ticket
18211 $ 2 0 0 O issue ticket
12342 6 2 0 0 0 issue ticket

Appendix C

CS051
Handouts

Notes for Teaching CS051

For all data structures,

1. Introduce concept of data structure, for example, Stacks.
Give examples how stacks are implemented
® cafeteria trays

pile of books

2. Do drawings on board

3. Show development of pseudo code for activities performed
with datatype. For example for Stacks,

® clearstack
emptystack
fullstack
push

pop

4. Explain ATD of this particular data type.

package code
generic package code

5. Software Engineering Principles

Information Hiding
Reuse

Abstraction
Modularity
Localization
Uniformity
Completeness
Confirmability

6. Ada’s language features that aid in the implementation of
software engineering principles.

package specification & body
subprograms

limited & private types
generics

CS0bH1
Handout #1

Refer to old program examples and notes covering arrays from CS050

-«ADA PROGRAM TO INPUT AN ARRAY OF 5 VALUES AND SORT THEM.
- Do PINTO oo-osPRING 93 CS 051
with text_io; use text_io;
procedure bubsort is
package iio is new integer_io(integer);
use ilo;
type arytype is array(1..5) of integer;
list,slist : arytype;
no_rec : integer;
procedure getdata(no : out integer; alist : out arytype) is
n:integer;
begin -- getdata
put_ llne(“ENTER 5 INTEGERS");
for i in 1..5 loop

get(n);
alist(i) := n;
end loop;
no := 5;

end getdata;
procedure sort(alist : in out arytype;no : in incteger) is
temp : integer;
done : boolean;
begin -- sort
done := false;
while not done loop
done i=true;
for j in 1 ..no - 1 loop
if alist(j) > alist(j+1l) then
temp s= alist(j+1);
alist(j+1) := alist(j);
alist(j) := temp;
done := false;
end if;
end loop;
end loop;
end sort;
begin--bubsort
getdata(no_rec,list);
put_ 11n<I; " unsorted list");
for j ..no_rec loop
P“t(IISt(J) 5);
new_line;
end loop;
slist := list;
sort(slist,no_rec);
put_line(" sorted list");
for j in 1l..no _rec loop
put(slxst()) 5);
new_line;
end loop;
nevw_line;
end bubsort;

-program Lubsort(input,output);
type arytype = array(l..5] of integer;
var a,b : arytype;

i,)] ¢ integer;

(tft*ii*ittittiﬁii***tﬁtt***t*i*t**t*ﬁtittt*ttttt**ttttiittitt*t*i*tt*)

procedure getdata(var p : integer; var ary : arytype);
var n : integer;

begin
writeln(’ enter 5 integers’);
for i ¢:t= 1 to 5 do
begin
readln{n);
ary[{i] := n;
end;
p t= 5;
end;

‘ttt*itﬁti********t***tt***t****it******t*t*ﬁ***tit#ttti*i******t*t*tﬁ)

procedure sort(var aa: arytype; var i : integer);
var j,temp : integer;
done : boolean;
begin
done := false;
while not done do
begin
done := true;
for j:= 1 to i-1 do
begin
if aa({j] > aa[j+1l] then
begin
temp := aa[j+1]);
aa[j+1] := aa(j); |
aa(j] := temp;
done := false;

end;
end;
end;
end;

(t************t*:*******f*t************************t******t******)
begin
getdata(i,a);
for j := 1 to i do
write(a(j] :5);
writeln;
for j := 1 to i do
b(j) := a[jl);
sort(b , 1i);
for j := 1 to i do
write(b(j) :5);
end.

CSO05H1
Handout #2

Stack Exercises

Show what is written by the following segments of code, given that Stack is a stack
of integer elements and X. Y, and Z are integer variables.

1. ClearStack(Stack) ;

X:=1;
Y:=0
Z:=4;

Push(Stack, Y);
Push(Stack, X);
Push(Stack, X + 2);
Pop(Stack, Y);
Push{Stack, SQR(2))
Push(Stack, Y);
Push(Stack, 3);

Pop(Stack, X);
Writeln('X = ’, X);
Writeln(’Y = *, Y);

Writeln('Z = ’, Z); '
WHILE NOT EmptyStack(Stack) DO

BEGIN
Pop(Stack, X);
Writeln(X)
END
2. ClearStack(Stack);
X:= 4,
Y:=0;
Z:=X + 1;

- Push(Stack, Y);
- Push(Stack, Y +1);
Push(Stack, X);
Pop(Stack, Y);
X:=Y + 1;
Push(Stack, X);
Push(Stack, Z);
WHILE NOT EmptyStack(Stack) DO
BEGIN
Pop(Stack, 2);
Writeln(2);
END;
Writeln(’ X
Writein(’'Y
Writeln(’Z

“X);
" Y);
",2)

——
with text_io; use text_io;
procedure “stackmain is
maxstack : constant 1nth¢r := 100;
subtype elementtype is character range ' ‘’,.’'z’';
type arytype is array(l..maxstack) of elementtype;
type stacktype is record
elements : arytype;
top : integer range 0..maxstack;
end record;
ch : character; s : stacktype;
procedure clearstack(stack : out stacktype) is
begin =-- clearstack
stack.top := 0;
end clearstack;
function fullstack(stack :in stacktype) return boolean is
begin -~ fullstack
if stack.top = maxstack then
return true;
else
return false;
end if;
end fullstack;
function emptystack(stack:in stacktype) return boolean is
begin -- emptystack
if stack.top = 0 then
return true;
else
return false;
end if;
end emptystack;
procedure push(stack:in out stacktype; newelement:in elementtype) :Is
begin -- push
stack.top := stack.top + 1;
stack.elements({stack.top) := newelement;
end push;
procedure pop(stack:in out stacktype; poppedelement:in out
elementtype) is
begin -= pop
poppedelement := stack.elements(stack.top);
stack.top := stack.top - 1;
end pop,
begin -- stackmaxn
clearstack(s);
put_line("Enter Characters for stack.enter ‘g’ for quit");
new_line;
gct(ch).put(ch),
while (ch /= ’q’) and not fullstack(s) loop
push(s, ch),
get(ch) ;put(ch);
end loop;
new_line;
if fullstack(s) then
put_line("Stack full");
end if;

while not emptystack(s) loop
pPop(s,ch);

put(ch);
end loop;
new_line;
end stackmain;
SHU> ada stackmain.ada -- COMPILES SOURCE CODE
SHU> ald stackmain -« LINKS OBJECT CODE
SHU> a.out -~ EXECUTES EXECUTABLE CODE

Enter Characters for stack.enter ’‘q’ for quit

adnoH ydnasqg
Sandy Honda

- D D T W D S TR S D D T G D TR b D D e D S D D D G G5 GR A D N S A S D WD D R OB WD G AP P S TR A Sh Gh G e e e

SHU> a.out -=- EXECUTES EXECUTABLE CODE

tnter Characters for stack.enter ‘g’ for quit

NOW IS THE TIME FOR ALL GOOD MEN TO COME TO THE AID OF THE WONDERFUL BEAUTIFUL

Stack full
RPU GNITICXE SUOIROLG LUFITUAEB LUFREDNOW EHT FO DIA EHT OT EMOC OT NEM DOOG LL

== FILE : STACKPKG.ADA (Package Specification) 1/93 S. Honda
package stackpkg is
maxstack : constant integer := 15;
subtype elementtype is integer range integer’/first..integer’last;
type arytype is array(l..maxstack) of elementtype;
subtype toptype is integer range 0..maxstack;
type stacktype is record
elements : arytype;
top : toptype;
end record;
procedure clearstack(stack:out stacktype);
function fullstack(stack: in stacktype) return boolean;
function emptystack(stack:in stacktype) return boolean;
procedure push(stack:in out stacktype;newelement:in elementtype);
procedure pop(stack:in out stacktype;
poppedelement:in out elementtype);

end stackpkg;

— FILE : STACKBPK.ADA (Package Body) 1/93 S. Honda
with text_io; use text_io;
package body stackpkg 1is
procedure clearstack(stack:out stacktype) is
begin -- clearstack
stack.top := 0;
end clearstack;
function fullstack(stack: in stacktype) return boolean is
begin -- fullstack
if stack.top = maxstack then
return true;
else
return false;
end if;
end fullstack;
function emptystack(stack:in stacktype) return boolean is
begin -- emptystack
if stack.top = 0 then
return true;
else
return false;
end if;
end emptystack;

procedure push(stack:in out stacktype;newelement:in elementtype) is
begin ~- push
stack.top := stack.top + 1;
stack.elements(stack.top) := newvelement;
end push;

procedure pop(stack:in out stacktype;
poppedelement:in out elementtype) is
begin -- pop
poppedelement := stack.elements(stack.top);
stack.top := stack.top - 1;
end pop;

ond stackpkg,

- FILB : STKMAIN.ADA (Project 2) 1/93 S. Honda
with stackpkg, text_io; use stackpkg, text_io;
procedure stkmain is
package iio is new integer_io(integer);
use iio;
- : stacktype;
numb : integer;
begin -- stkmain
clearstack(s);
for i in 1..100 loop
put ("Enter integer(");put(i);put(™) *);
put (" (0 to quit) => @),
get (numb) ;put (numb) ;new_line;
if numb = 0 then
exit;
elsif (numb > 0) and not fullstack(s) then
push (s, numb) ;
put(”... ");put(numb);put_ llne(" pushed onto stack");
elsif (numb < 0) and not emptystack(s) then
pop (s, numb) ;
put("... ");put(numb);put_line(" popped from stack");
elsif (numb > 0) and fullstack(s) then
put("... Stack Full cannot push");
put (numb) ;put_line(" onto stack");
elsif (numb < 0) and emptystack(s) then
put("... Stack Empty cannot pop");
put_line(" number from stack");
end if;
end loop;
new_line;
put_line("Values from stack are ");
while not emptystack(s) loop
pop (s, numb) ;
put (numb) ;put_line(" popped ");

end loop;
put_line(" End of Job!");
end stkmain;

- EXECUTION RUN OF STKMAIN.ADA
Enter integer(1) (0 to quit) => 1
oo 1 pushed onto stack
Enter integer(2) (0 to quit) => 2
e 2 pushed onto stack
Enter integer(3) (0 to guit) => -22
cee 2 popped from stack
Enter integer(4) (0 to quit) => -11
ces 1 popped from stack
Enter integer(5) (0 to quit) => -10
... Stack Empty cannot pop number from stack
Enter integer 6) (0 to quit) => 1
P 1 pushed onto stack
Enter integer(7) (0 to quit) => 2
oo 2 pushed onto stack
Enter integer(8) (0 to quit) => 3

coe 3 pushed onto stack

Enter

Enter

Enter
Enter
Enter
éﬁéet

Enter

Enter
Enter

Enter

Enter
Enter

Enter

integer(

4 pushed
integer(

5 pushed
integer(

6 pushed
integer(

7 pushed
integer(

8 pushed
integer(

9 pushed
integer(

10 pushed
integer(

11 pushed
integer(

12 pushed
integer(

13 pushed
integer(

14 pushed
integer(-

15 pushed
integer(

9) (0 to
onto stack
10) (0 to
onto stack
11) (0 to
onto stack
12) (0 to
onto stack
13) (0 to
onto stack
14) (0 to
onto stack
15} (0 to
onto stack
16) (0 to
onto stack
17) (0 to
onto stack
18) (0 to
onto stack
19) (0 to
onto stack
20) (0 to
onto stack
21) (0 to

... Stack Full cannot push
Enter integer(

15 popped

Enter integer(

* s

14 popped

Enter integer(

Values
13 popped
12 popped
11 popped
10 popped

from stack

popped
popped

popped
popped
popped
popped
popped

popped
End of Job!

HNWLBOAI®DY

popped —

22) (0 to
from stack
23) (0 to
from stack
24) (0 to

are

quit) => 4
quit) => 5
quit) => 6
quit) => 7
quit) => 8
quit) => 9
quit) => 10
quit) => 11
quit) => 12
quit) => 13
quit) => 14
quit) => 15
quit) => 16

16 onto stack
quit) => -15
quit) => -14
quit) => 0

CS0bH1
Handout #3

- PILE - QUEPKG. ADA
- This is the package specification that will allow one to
- implcncnt a que with intcgors.

package quepkyg is
subtype maxqueuetype is positive range 1..1000;
maxqg-2ue : maxqueuetype := 25;
subtype elementtype is integer range -30000..30000;
type elementary is array(l..maxqueue) of elementtype;
type queuetype is
record
elements : elementary;
front,rear : (0..maxqueue);
end record;
procedure clearqueue(queue : in out gueuetype);
function fullqueue(queue : in gueuetype) return boolean;
function emptyqueue(queue : in queuetype) return boolean;
procedure insert(queue : in out queuetype;
newvelement: in elementtype);
procedure delete(queue : in out queuetype;
element : in out elementtype);

end quepkg;

- FILE QUEPKGB.ADA
- This is the package body for the package QUEPKG

- P D A P P S D WS G En e G G G R D P W A D T D e S D A D G G T W D D S G D W P D G R P D G e T WS S w w

package body quepkg is
procedure clearqueue(queue : in out queuetype) is
begin -- clearqueue
queue. front := maxqueue;
gueue.rear := maxqueue;
end clearqueue;
function fullqueue(queue : in queuetype) return boolean is
qguerear : 1l..maxqueue;
begin -~ fullqueue
if queue.rear = maxqueue then
- querear := 1;
else
querear := gqueue.rear + 1;
end if;
if querear = queue.front then
return true;
else
return false;
end if;
. end fullqueue;
function emptyqueue(queue : in queuetype) return boolean is
begin -- emptyqueue
if gqueue.rear = queue.front then
return true;

- e b e G TGP T G TS T > W V2

else
return false;
end if;
end emptyqueue;

procedure delete(queue : in out gueuetype;
element: in out elementtype) is
begin -- insert
if queue.front = maxqueue then
queue.front := 1;

else
gueue. front := queue.front + 1;
end if;
element := queue.elements(queue.front);
end delete;

procedure insert(queue : in out queuetype;
newelement : in elementtype) is
querear : elementtype;
begin -- insert
if queue.rear = maxgqueue then
queue.rear := 1;
else
queue.rear := gueue.rear + 1;
end if;
queue.elements (queue.rear) := newelement;
end insert;

end quepkg;

- FILE : QUEMAIN.ADA

- This main procedure will create a queue called q and allow
- the user to place integer values onto the queue.

with quepkg,text 10, use quepkg,text io;
procedure quemain is
q : queuetype;
numb : integer;
package iio is new integer_io(integer); use iio;
begin -- quemain
clearqueue(q);
put("Enter data to put into the queue ");
get (numb) ;put (numb) ;new_line;
vwhile (numb /= 0) and not fullqueue(qg) loop
= insert(q,numb);
get (numb) ;put (numb) ;new_line;
end loop;
if fullqueue(q) then
put_line("Full Queue! ");
end if;
put_line("Queue Elements are : ");
while not emptyqueue(q) loop
delete(q,numb);
put (numb) ;new_line;
end loop;
end quemain;

- EXECUTION RUN OP QUEMAIN
Enter data to put into the queue 100
-50
0
Queue Elements are :
100
-50

- FILE : QUEUE.ADA
- This main procedure is an example of implementing a queue.

with text io; use text_io;

procedure queue is . o o x GUd WL
ubtype maxqueuetype is positive range 1..
maxqueue : maxqueuetype := 25; ; ﬁj /
ubtype elementtype is integer range -30000..30000;
“type elementary is array(l..maxqueue) of elementtype;
type queuetype is
record
elements : elementary; .
front,rear : (O.-maxqueue); “u&ﬂékiui*w}[)
end record; l \
q ! queuetype;
numbd : integer;
package iio is new integer_io(integer); use iio;
procedure clearqueue(queue : in out queuetype) is
begin -- clearqueue
queue. front := maxqueue;
qgueue.rear := maxqueue;
end clearqueue;
function fullqueue(queue : in queuetype) return boolean is
qguerear : 1..maxqueue; .
begin -- fullqueue
if queue.rear = maxqueue then
querear := 1;
else
querear := queue.rear + 1;
end if;
if querear = queue.front then
return true;
else
return false;
end if;
end fullqueue;
function emptyqueue (queue : in queuetype) return boolean is
begin -~ emptyqueue
if queue.rear = queue.front then
return true;
else
return false;
end if;
end emptyqueue;
proccdure delete(queue : in out queuetype;
element: in out elementtype) is
begin -- insert
if queue.front = maxqueue then
queue.front := 1;
else
queue.front := queue.front + 1;
end if;
element := queue.elements(queue.front);
end delete;

procedure insert(queue : in out queuetype;
newelement : in elementtype) is
querear : elementtype;
begin -- insert
if queue.rear = maxqueue then
queue.rear := 1;
else
gqueue.rear := gueue.rear + 1;
end if;
queue.elements (gqueue.rear) := newelenment;
end insert;

begin -= gueue
clearqueue(q) ;
put ("Enter data to put into the queue ");
get (numb) ;put (numb) ;new_line;
while (numb /= 0) and not fullqueue(q) loop
insert (g, numb);
get (numb) ;put (numb) ;new_line;
end loop;
if fullqueue(q) then
put_line("Full Queue! ");
end if;
put_line("Queue Elements are : ");
while not emptyqueue(q) loop
delete(qg,numb);
put (nunmb) ;new_line;
end loop;
end queue;

- - - o e an - P D R S TP s D P T D T T - . e .

- EXECUTION RUN OF QUEUE ADA
Enter data to put into the queue 5
-34
100
10
0
Queue Elements are :
5
-34 -
100 -
10

-~ FPILE -~ GPKG.ADA
-- This is the generic package specification that will
-- allow one to implement a queue with elementtype.

D e D D T b U W SR G ol WD G G T PGP D WD G D W WD W G TR AR P AR P WD G g W o O D D D R G AR GE WD G Y D D WP G Y D WD W P W e

generic

maxqueue : in positive;

type elementtype is private;

package gpkg is
procedure clearqueue;
function fullqueue return boolean;
function emptyqueue return boolean;
procedure insert (newelement: in elementtype);

procedure delete (element : in out elementtype);
end gpkg;

- FILE - GPKGB.ADA
-- Thic is the package body for the package SPKG.
package body gpkg is
subtype maxqueuetype is integer range 1l..maxqueue;
type elementary is array(maxqueuetype) of elementtype;
front,rear : maxqueuetype;
queue : elementary;
procedure clearqueue is
begin -- clearqueue
front := maxqueue;
rear := maxqueue;
end clearqueue;
function fullqueue return boolean is
querear : maxgqueuetype;
begin -- fuliqueue
if rear = maxqueue then
querear := 1;

else
querear := rear + 1;

end if;

if querear = front then
return true;

else
return false;

end if;

end fullqueue;

function emptyqueue return boolean is
begin -- emptyqueue
if rear = front then
return true;
else
return false;
end if;
end emptyqueue;
procedure- insert (newelement: in elementtype) is
begin -- insert
if rear = maxqueue then
rear := 1;
else
rear := rear + 1;
end if;
queue(rear) := newvelement;
end insert;

D A GRS A G T e L D G D S e - - -

procedure delete (element : in out elementtype) is
begin -- delete
if front = maxqueue then
front := 1;
else
front := front + 1;
end if;
element := queue(front);
end delete;
end gpkg;

with text_io,gpkg; use text_io;
procedure | -ain3 is
-- type declarations
type rectype is
record
itenmf:character;
namef:string(1..5);
end record;
type employeetype is
record
name:string(1..5);
age :positive;
smoker:boolean;
end record;
-~ variable declarations

size : positive := 7;
itenm : rectype;
employee : employeetype;
noemp : positive :=5;

-~ instantiation of generic packages
package iio is new integer_io(integer);
package empqueue is new gpkg(noemp,employeetype),
package g1l 1s new gpkg(size,rectype);
package g2 is new gpkg(size, rectype) ;
package smokeio is new enumeration _io(boolean);
use ql,q2,iio,empqueue, smokeio;

begin --main3
gdl.clearqueue;q2.clearqueue;
item.itemf := %/,
item.namef := "kkkixn,
gl.insert(item);
item.itemf := ’s’;
item.namef := "Sandy";
dl.insert(item);
item.itemf := ’s’;
item.namef := "sally";
gl.insert(item);
item.itemf := ‘H’;
item.namef:= "Henry";
g2.insert(item);
item.itemf := rT/;
item.namcf := "Tomas";
g2.insert(item);
item.itemf := ’L/;
item.namef := "Larry";
d2.insert(item);
gl.delete(item);
put("deleted item from ql. It was ");put(item.itemf);new_line;
Put(™..cccececnee Name was ") ;put(item.namef);new_line;
item.jitemf := ’M’;
item.namef := "Moris";
dl.insert(item);
new_line(2);
while not ql.emptyqueue loop
gl.delete(item);
put (item. namef) ;
end loop;
new_line;
while not g2.emptyqueue loop

g2.delete(item);
put (item.namef);
end loop;
empgueue.clearqueue;
while not empgueue.fullgueue loop
put("Enter employee name (5 characters only!) ==> ");
get (employee.name) ; put (employee.name) ; new _line;
put ("Does emplnyee smoke? true or false please ==> ");new_line;
get (employee. smoker) ;put (employee.smoker) ;new_line;
put (“How old is the employee’ ==> "),
get (employee.age) ;put (employee.age) ;new_line;
insert (employee) ;
end loop;
while not empqueue.emptyqueue loop
delete(employee);
put (employee.name) ;put (employee.age) ;put (employee.smoker) ;
new_line;
end loop;
put_line(".... End of Job!!!"); new_line;
end main3;

- D D S D G D WD D D G G D - S A S WD W G S e - -

deleted item from gl. It was *
............ Name was **%#%%

SandySallyMoris

HenryTomasLarryEnter employee name (5 characters only!) ==> Frank
Does employee smoke? true or false please ==>

TRUE

How 0ld is the employee? == 39

Enter employee name (5 characters only!) ==> Carol
Does employee smoke? true or false please ==>
FALSE

How old is the employee? ==> 23

Enter employee name (5 characters only!) ==> Larry
Does employee smoke? true or false please ==>
FALSE

How old is the employee? ==> 45

Enter employee name (5 characters only!) ==> Terry
Does employee smoke? true or false please ==>

TRUE

How old is the employee? ==> 35

Frank 39TRUE

Carol 23FALSE

Larry 45FALSE

Terry 35TRUE

-«.. End of Job!!!

CSO0bHT
Handout #4

e DG A R D G D R D D R A 0P R N G R YD D e T S WD L 4 S G e e A S D S G W aD e e o T W G R D D G e e T W TR b W W e

- FILE : pts.ada
-- This procedure creates a simple linked list of records.

- , S. Honda 3/93
with text_io; use text_io;
procedure pts is
type rec ;
type ptr is access rec;
type rec is
record
id:character;
link : ptr;
end record;
first,p : ptr;
begin-
first := new rec’(’S’,null);
first.link := new rec’(’a’,null);
first.link.link := new rec’(’N’,null);
first.link.link.link := new rec’(’D’,null);
first.link.link.link.link := new rec’(’Y’,null};
p:=first;
while p /= null loop
put(p.id);
p:=p.link;
end loop;
new_line;
end pts;
shu.sacredheart.edu > ada pts.ada
shu.sacredheart.edu > ald ~o pts.exe pts
shu.sacredheart.edu > pts.exe

SANDY

-- FILE : linklist.ada
- This program creates a linked list of 10 numbers.
-— March 22, 1993 S. Honda
with text_io; use text_io;
procedure linklist is

type node;

type ptr is access node;

type node is

record

integer;
ptr;

info
next
end record;
printnode, firstnode, oldnode, newnode : ptr;
value,i : integer := 0;
-- GF™ IC INSTANTIATION
package i .s new integer_io(integer);
use iio;

procedure getdata(value : in out integer) is

begin -- getdata
put("Enter value : ");
get(value);put(value); new_line;

end getdata;

begin -- linklist

firstnode := new node;

oldnode t= firstnode;

GETDATA(value);

oldnode.info := value;

oldnode.next := null;

for i in 2..10 loop
GETDATA(value);
newnode := new node’{value,null);
oldnode.next := newnode;
oldnode := newnode;

end loop;

printnode := firstnode;

put("List of Values :");new_line;

while printnode /= null loop
put(giintnode.info);

new_line;
printnode := printnode.next;
end loop;

end linklist;

shu.sacredheart.edu> ada linklist.ada . [RETURN] -- compiles

shu.sacredheart.edu> ald -o linklist.exe linklist [RETURN] -- links, .
creates executable file

shu.sacredheart.edu> linklist.exe (RETURN] -- run
Enter value : 53
Enter value : -2
Enter value : 10
Enter value : 2
Enter value : -5
Enter value : 3
Enter value : 0
Enter value : 1
Enter value : 6

Enter value :
List of Values :
53
-2
10
2
-5

NOA=OW

- PROCEDURE links.ada

- This program creates a double link list that links all

- records together with link, and links all smokers together
- with smokerlink. It uses a record within a record structure.
- March 1993 S. Honda

D D D Y W D D G T AR P P TR R D D D G D ED @ NP D G D D S WGP S G R S WD WS W T WD D R . G D e WD S D D . S s e

with text_io; use text_io;
procedure links is
package iio is new integer_io(integer);
package smokeio is new enumeration_io(boolean);
use iio,smokeio;
type infotype is
record
name : string(1..6);
smoker: boolean;
age : natural;
end record;
type node;
type ptr is access node;
type node is

record.
info : infotype;
link ¢ ptr;
smokerlink : ptr;

end record;
-- variable declartions
first : ptr;
procedure getdata(first:in out ptr) is

joe : file_type;

next, last,nextsk,lastsk : ptr;

dummy : node := (("dummy ", false,999),null, null);

info_rec : infotype;

begin -- getdata

first := new node’ (dummy);

next := first;

nextsk: fzrst,

open{joe,in_file,"Age.dat");

while not end of file(joe) loop
get()oe 1nfo rec.name) ;
get (joe, 1nfo_rec smoker) ;
get(joe,info_rec.age);
last := next;
next := new node’ (info_rec,null, null);
last.link := next;
if next.info.smoker=true then

nextsk.smokerlink := next;
nextsk := next;
end if;

end loop;
close(joe);
end getdata;
procedure printlist(first:in out ptr) is
next : ptr;
begin -- printlist
put_line(" Linked list of all...")
put_line("-=-------emmmeemcmaea 'W
next := first.link;

while next /= null loop
put (next. info.name) ;
put(® ");
put (next.info.smoker) ;new_line;
next := next.link;
end loop;
new_line(2);
put_line(" Linked list of smokers...");
put_line("-~-ccccccccccrccccceonconaa- "),
next := first.smokerlink;
while next /= null loop
put (next.info.name) ;put (" “);
put (next.info.smoker) ;
put (next.info.age) ;new_line;
next := next.smokerliwnk;
end loop;
put_line(" end of listing...");
end printlist;
begin -- links
getdata(first);
printlist(first);
€3k links';

- an an e w o . D WD WP D e TR P D R R - . D G WD At D s A P - - . - — . -

- DATA FILE : Age.Dat

- T D G D D P T D G R S T D P D D D S S WD D S D WD @S D D G WD R D @ T S W e - -

Gerald false 99
Angela true 48
George false 40
DawnB. true 39
LizzyH false 15
JaneH. true 51
Donald false 51
Andrew true 35’

Samuel FALSE
Harold TRUE
Edward FALSE
AliceK FALSE
Gerald FALSE
Angela TRUE
George FALSE
DawnB. TRUE
LizzyH FALSE
JaneH. TRUE
Donald FALSE
Andrew TRUE

Linked list of smokers...

Angela
DawnB.
JaneH.
Andrevw

end

TRUE 48
TRUE 39
TRUE 51
TRUE 35

of listing...

- e D D D D WS D G DR T O D D G S D R G W G D D W W D S D G WD G D Gl D W D D e T D WP D D G G WD W A e Y -

- PILB s LLPKG ADA package for link lists!
with toxt io; use text _lo;
package 1lipkg is

type node;

type ptr is access node;

type node is

record
info : integer;
next : ptr;
end record;

printnode,firstnode : ptr := null;

newvalue : integer;

-- for integer I/O

package iio is new integer_io(integer);

-=- new procedures

procedure getdata(newvalue : in out integer);

procedure insert(firstnode: in out ptr;

newvalue : in integer);

procedure printlinklist(firstnode : in ptr);

end llpkg;

- . D e . - o e D P D T . A - - - D D e - - -

package body llpkg is
use iio;
procedure getdata(newvalue : in out integer) is
begin -- getdata
put (YEnter value : ");
get(newvalue),put(newvalue) ;new_line;
end getdata;
procedure insert(firstnode: in out ptr;
newvalue : in integer) is
-=- local declarations
nextnode, newnode : ptr;
found 't boolean;
begin =- insert
newnode := new node’ (newvalue,null);
if firstnode = null then
firstnode := newnode;
else
nextnode := firstnode;
-- check for special case inserting to front of list
if newvalue < nextnode.info then
-~ insert before first node
newnode.next := firstnode;
firstnode := newnode;
else
-- find insertion place
found := false;

while (nextnode.next /= null) and not
found loop
if newvalue >= nextnode.next.info then
nextnode := nextnode.next;
else
found := true;

end if;
end loop;

-- connect pointers
newnode.next := nextnode.next;
nextnode.next := newnode;
end if; -- general case
end if; -- insert into nonempty list
end insert;
procedure printlinklist(firstnode : in ptr) is
printnode : ptr;
begin -- printlinklist
printnode := firstnode;
new_line(2);
put("List of Ordered Values :");new _line;
while printnode /= null loop
put (printnode. info,12) ;new_line;
printnode := printnode next;
end loop;
end printlinklist;
end llpkg;

- S S D S T A D A WP G D W T WD P - G G G WD e G D S D S e D G G T T P S D D W S W - -

- FILE : MAIN.ADA Main procedure that uses the above package
with 1lpkg,text io; use 1llpkg,*ext_io;
procedure main is
use iio;
begin -- main
getdata(newvalue);
while newvalue /= -999 loop
insert (firstnode, newvalue);
getdata(newvalue);

end loop;
printlinklist(firstnode);
end main;
- To compile package specification, package body, and the main
- procedure; to link the main procedure; and run main:

- - e - an -y S T e e G G T . D W S G D WS D W S

SHU> ada llpkg.ada llpkgb.ada main.ada
SHU> ald main

SHU> a.out

Enter value : 100
Enter value : 42
Enter value : 5
Enter value : -3
Enter value : 38
Enter value : 97
Enter value : -999

List of Ordered Values :
-3
5
38
42
97
100

D WD P D S A TR D WY W AR A R G W D D S D S D D W T T S D G D S e W e W W W e e P

- FILE : 1ll.ada
- This program creates an ordered linked list of Names
- 4/93 S. Honda
with text_io; use text_io;
procedure 11l is
type node;
type ptr is access node;
type node is record
info:string(1..5);
link:ptr;
end record;
first : ptr;
procedure createlist (first:in out ptr) is
old,next : ptr;

found : boolean := false;
subtype nametype is string(1..5);
name ! nametype;

procedure getdata(name : out nametype) is
person : nametype;
begin -~ getdata
put("Enter Name => “);
get (person); put(person); new_line;
name := person; '
end getdata;
begin -- createlist
getdata(name);
first := new node’ (name,null);
old := first;
getdata(name) ;
while name /= "xxxxx" loop
next := new node’ (name,null);
if old.link = null then
~=- only one node in list
if old.info > name then
-- insert in front of head node
first := next;
next.link := old;
else
-=- or insert after head node
old.link := next;
end if;
else -- more than one node in link list
if (old = first) and (next.info < old.info)
then
first := next;
next.link := old;
else
found := false;
while o0ld.link /= null and not found
loop
if old.link.info > next.info then
found := true;
else
old := old.link;
end if;

end loop;
if found then
next.link := old.link;

old.link := next;
else
old.link := next;
end if;
end if;
end if;

old := first;
getdata(name) ;
end loop;
end createlist;
procedure printlist (first:in ptr) is
next : ptr;
begin ~-- printlist
next := first;
put_line("People in order :");
put_line("--=----=cowce-c-—- ");
while next /= null loop
put (next.info) ;
new_line;
next := next.link;
end loop; '
end printlist;
begin -- 11
createlist(first);
printlist(first);
end 11;

Enter Name => Sandy
Enter Name => Andie
Enter Name => Lizzy
Enter Name => Janet
Enter Name => Allan
Enter Name => Candy
Enter Name => Gerry
Enter Name => XXXXX
People in order :

D AR D G D ED A D W D G SR aR D GD G G e A A S S TP D G, G P G D e TP W M R D AR D P W A W WS o T W WP e D U D W D G G D an .

PROCEDURE links.ada

This program creates a double link list that links all
records together with link, and links all smokers together
with smokerlink. It uses a record within a record structure.
March 1993 S. Honda

with text_io; use text_io;
procedure links is

package iio is new integer_io(integer);
package smokeio is new enumeration_io(boolean);
use iio,smokeio;
type infotype is
record
name : string(1..6);
smoker: boolean;
age : natural;
end record;
type node;
type ptr is access node;
type node is

record
info : infotype;
link ¢ ptr;

smokerlink : ptr;
end record;
-- variable declartions

first : ptr;
procedure getdata(first:in out ptr) is
joe : file_type;
next, last,nextsk, lastsk : ptr;
dummy : node := (("dummy ",false,999),null, null);
info_rec : infotype;

begin -- getdaca

first :=- new node’ (dummy);

next := first;

nextsk:= first; lastsk:=first;

open(joe,in_file,"Age.dat");

while not end of file(joe) loop
aet (joe, info _rec.name) ;
get(joe, 1nfo_rec smoker) ;
get(joe,info_rec.age);
last := next;
next := new node’ (info_rec,null, null);
last.link := next;
if next.info.smoker=true then

lastsk.smokerlink := next;
lastsk := next;
end if;

end loop;
close(joe);
end getdata,
procedure przntlist(first.ln out ptr) is
next,last : ptr;
begin -~ printlist
put_line(" Linked llst of all...");
put_line("w--=-cccccccccccccaaa- ")
next := first.link;

while next /= null loop
put (next.info.name);
put (" “);
put (next. znfo smoker) ;new_line;
next := next.iink;
end loop;
new_line(2);
put_line(" Linked list of smokers...
put_line("----~---scecroccmcrccccee
next := first.smokerlink;
while next /= null loop
put (next.info.name) ;put(" ");
put (next.info.smoker) ;
put(next.info.age);new_line;
next := next.smokerlink;
end loop;
put_line(" end of listing...%);
end printlist;
begin -- links
getdata(first);
printlist(first);
en2 links;

LD D S T G D - D D G S - - — - — S ——— - W D WP - — - - —— -

SandyH false 41
Harold true 53
Edward false 55
AliceK false 75
GrandS false 99
Angela true 48
George false 40
DawnB. true 39
LizzyH false 15
JaneH. true 51
Donald false 51
Andrevw true 35

D D G D S G Y D G D WD T A - - - - - — > - -
D - - D G D D WD D TP WD S W i SIS S D - - > - VP WD - S S W W e - -

D S 5 - - - -

Angela TRUE 48
DawnB. TRUE 39
JaneH. TRUE 51
Andrew TRUE 35
end of listing...

CSO051
Handout #5

Tree Traversal
This is a non-recursive psedocode for an inorder tree traversal.

PROCEDURE InOrder (TreeRoot : TreeType);
(*Print the elements in the binary tree pointed to *)
(* by TreeRoot in order from Smallest to largest. *)

VAR
PtrStack : StackType; (* stack of pointers used to *)
(* keep track of nodes until *)
(* they are printed *)
Ptr : PointerType; (* used to traverse the tree *)

BEGIN *(InOrder *)

(* Start out with an empty stack *)
ClearStack(PtrStack);

(* Begin at the root of the tree *)
Ptr : = TreeRoot;

REPEAT
(* Process until the whole tree is finished *)
(* Go to the left as far as possible, pushing pointer *)
(* to each node as it is passed. Stop when Ptr falls out *)
(* of the tree. *)

WHILE Ptr <> NIL DO
BEGIN
- Push(Ptr Stack, Ptr); (* Push node pointer onto stack *)
Ptr : = Pu*.Left; (* Keep moving to left *)
END; (* while *)

(* If there is anything left on the stack, pop, print *)
(* and move to the right *)
IF NOT EmptyStack (PrStack) THEN
BEGIN
Pop(PtrStack, Ptr); (* Climb back into the tree. *)
PrintNode(Ptr*.Info); (* Print Info part of Node *)
Ptr : = Ptr*.Right (* Move once to the right. *)
END (* If stack is not empty *)

UNTIL (Ptr = NIL) and (EmptyStack(PtrStack))
END; (* InOrder *)

- e Gy T D b G G D D W TR G S S T WD WS W D W D T D D T D S D G T D G W E U D G T D YD S D G G G A e T L D W e G G G W . e e

This procedure creates a binary tree. The left descendant

of each node alphabetically precedes its parent and the

right descendant alphabaetically follows its parents.

Note the recursive procedural call. Note also that procedures
are defined in other procedures. S. Honda 4/94

) Gy D e P D G W D W GRS R D G D D Y D A P D D WP SR D D Y D D D S R WD e D G S e .

with text_io; use text_io;
procedure trees is

subtype stg is string(1..6);
type rec;
type ptr is access rec;
type rec is
record
info : stg;
left,right : ptr;
end record;
root : ptr;

- - - e . - - - S . D D P G S - D . - A - - -

procedure TreeCreate (root : in out ptr) is

parent : ptr;
name : stg;
found - : boolean;

procedure Getdata(name : in out stg) is
begin -- Getdata
put ("Enter a name (xXXx (XxxXxxX to quit) ==> ");
get (name); put(name);new_line;
end Getdata;
procedure Attach(name:in stg; parent : in out ptr) is
begin -- Attach
parent := new rec’(name,null,null);
end Attach;
procedure TreeSearch(parent: in out ptr; name: in stg;
found: in out boolean) is
begin -- TreeSearch
if parent = null then
- found := false;
Attach(name,parent);

else
if name = parent.info then
found := true;
else
if name < parent.info then
TreeSearch(parent. left,name, found);
else
TreeSearch(parent.right,name, found);
end if;
end if;
end if;

end TreeSearch;
begxn -= TreeCreate
Getdata(name) ;
-~ insert first string in the root node
if name /= "xxxxxx" then
Attach(name,root);
else

root := null;
end if;
Getdata (name);
while name /= "xxxxxx" loop
parent := root;
TreeSearch (parent,name,found);
if found then
put (name); put_line(" is already on tree! ");
end if;
Getdata (name) ;
end loop;
end TreeCreate;
procedure Traverse (root : in ptr) is
' -- this does an inorder traversal of a tree
procedure visit (root : in ptr) is
begin -- visit
put_line(root.info);
end visit;
begin -- Traverse
if root /= null then
Traverse (root.left);
visit (root);
Traverse (root.right);
end if;)
end Traverse;
begin -- Trees (Main Procedure)
root := new rec;
TreeCreate (root);
Traverse (root);
end Trees;

Enter a name (xxxxxx to quit) ==> thrush
Enter a name (xxxxxx to quit) ==> canary
Enter a name (xxXxXxx to ¢ 'it) ==> osprey
Enter a name (xxxxxx to ¢ it) ==> turkey
Enter a name (xxxxxx to quit) ==> oriole
Enter a name (xxxxxx to quit) ==> pigeon
Enter a name (xxxxxx to quit) ==> falcon
Enter a name (xxxxxx to quit) ==> canary

canary is already on tree!

Enter a name (xxxxxx to quit) ==> xxaxxxx
canary

falcon

oriole

osprey

pigeon

thrush

turkey

ush

D D D D U WD W T WS WD G A WP T D G G D WD S TR AP WS R D D b A R G D D A P T AR A S o W AP S W G A D G G Y G WD OB W D W WD W

- This package creates a binary tree. 4/93 S. Honda

package trepkg is
subtype stg is string(1..6);
type rec;
type ptr is access rec;
type rec is
record
info : stg;
left,right : ptr;
end record;
root : ptr;
procedure TreeCreate (root : in out ptr);
procedure Traverse (root : in ptr);
end trepkg;

D A WD G U G D D WP W T WP W W W My WD D D D W D D D D T W D D A S e W D WD W P A WD D G W

- This package body creates a binary tree. 4/93 S. Honda

with text_io; use text_io;
package body trepkg is

D A P D G, G D T G A A D D S R WD W D D s T D i D G TR T D R G WD Y WD W WD P G S W D G = W WD G W O e e

procedure TreeCreate (root : in out ptr) is

parent : ptr;
name : stg;
found : boolean;

procedure Getdata(name : in out stg) is
begin -- Getdata
put ("Enter a name (xxxxxx to quit) ==> ");
get(name); put(name);new_line;
end Getdata;
procedure Attach(name:in stg; parent : in out ptr) is
begin -- Attach
parent := new rec’(name,null,k null);
end Attach;
procedure TreeSearch(parent : in out ptr; name : in stg;
found : in out boolean) is
begin ~- TreeSearch
if parent = null then
found := false;
Attach(name,parent);

else
if name = parent.info then
found := true;
else
if name < parent.info then
TreeSearch(parent.left,name, found) ;
else
TreeSearch(parent.right, name, found);
end if;
end if;
end if;

end TreeSearch;
== insert first string in the root node
begin -~ TreeCreate
Getaa.a (nanme);
if name /= "xxxxxx" then
Attach(name,root);
else
root := null;
end if;
Getdata(name);
while name /= "xxxxxx" loop
parent := root;
TreeSearch (parent,name, found);
if found then
put (name); put_line(" is already on tree! ");
end if;
Getdata(name) ;
end loop;
end TreeCreate;

procedure Traverse (root : in ptr) is
== this does an inorder traversal of a txee
procedure visit (node : in ptr) is
begin -- visit
put line(node. info);
end visit;
begin -~ Traverse
if root /= null then
Traverse (root.left);
visit (root);
Traverse (root.right);
end if;
end Traverse;
end trepkg;

with trepkg; use trepkg;
procedure tremain is
begin -- tremain
reot==-newYecr
TreeCreate (root);
Traverse (root);
end tremain;

- D D G D S S T T D S YD D WD TP W D D - - D G D - S - - — - . -

- EXECUTION RUN OF tremain.ada

Enter a name (xxxxxX to quit) ==> osprey
Enter a name (xxxxxx to quit) ==> falcon
Enter a name (xxxxxx to quit) ==> turkey
Enter a name (xxxxxx to quit) ==> pigeon
Enter a name (xxxxxX to quit) ==> osprey

osprey is already on tree!

Enter a name (xxxXxx to quit) ==> oriole
Enter a name (xxxxxx to quit) ==> canary
Enter a name (xxxxxx to quit) ==> thrush
Enter a name (xxxxxx to quit) ==> xxxxxX
canary

falcon

oriole

osprey

pigeon

thrust

turkey

SAMPLE TREIE
‘ 78
~ —~
34 99
7 \ /

23 48 87
VA NVARN / N
85

12 30 38 48

CASE L TO DELETE A NODE WHICH IS A LEZIAr (ZTASY)
JUST PLUCK IT OFF TEHE TREZ

EXAMPLEDELETE 45 FROM ABCVE TREE
NEW TREE
78

/ \ .

34 99

// \\ / ~
22 45 87 107
s\ / / AN
12 30 38 85 110

#0 DELETZ A NODE WITE ONE CEILD (STILL EASY)
THEZ CHILD REPLACES THE PARENT

1
»*
n
U]
N

EXAMPLE....DELETE TEE 87 FROM A3CVZ TREE

NEW TREE
— --\\\\
34 99
7 \ g/ N
22 45 8 107
s\ /! \.
12 30 38 110

CASE 3 TO DELETE A NODE WITH TWO CHILDREN (NOT SO EASY).
RIGHT CHILD REPLACES DELETED NODE....ANY LEFT SUBTREZE APPENDED

TO THE LEFT OF RIGHT SUBTREE
EXAMPLE...DELETE 99

2 3
EXAMPLE...DELETE 34

Appendix D

CS050
Projects

Homework Assignment #1

Write your own ada program that will output a design or picture. Be
creative and show off your artistic talent! Your program should have a
header and an executable body. It also should contain the context clause,
"with text_io; use text_io;" because you need to make available the
subprograms put_line and new_line. | will electronically collect your
programs and create a class procedure that will contain all your files as
subprograms called procedures. | wil: send you this file via the mail
facility. | will also create a class package that will contain all your artistic
work and ship this to you too, so you see how packages that contain
reusable components are created. ‘

Homework Assignment #2

Write flowcharts using only the three logic patterns discussed in class,
the simple sequence, decision logic pattern, and the repetitious logic
pattern. Use only the symbols discussed in class: the start/end, /0O,
processing, decision making and the connection flowcharting symbols.
Draw your designs as | have in class. Make certain you define the
domain of the problem. Decide on the variable names you plan to use.

Homework Assignment #2b

Convert your flowcharts into Ada programs. Remember to document
your programs with your name, program description, and the current date.
Use good program style for readability and for later maintenance. Use
proper identifier names, indentation, and comments throughout your
programs. Turn in your programs along with its associated flowcharts
when done.

1.

Homework Assignment #3

Develop example programs using all 3 control structures.

® IF - ELSE - END IF

® IF - ELSIF - ELSE - END IF

e CASE

Include also, enumeration data types and string variables. Do some
I/0 with these enumeration types. Be creative! Draw flowcharts
indicating :ogic and define domain. Remember to document your
programs with your name, date program description and remember
to use proper indentation and naming conventions for readability.

Decide which case statements are legal on handout sheet. If they
are illegal, state why.

Homework Assignment #4

From the following three problems, select two to code in Ada.
Remember, you need to create data files using the VI editor before you
execute your Ada programs. You may want to create your own files with
varying amount of records to test your programs with. Think about the
problem domain and make sure you draw flowcharts before you begin to
code. Remember to use good program style! What kind of
documentation should be written?

Homework Assignment #5

Redo the last homework assignment using subprograms to write modular
code. Explain the parameters that you pass. (Why they were passed and
mode selected.)

Also create your own program(s) that uses file(s), procedure(s),
function(s), enumeration type(s), and for statement(s), and a case
statement.

Homework Assignment #6

Create your own program that uses exception handlers. Clearly define
your problem, problem domain, remember to use good Ada style.

Homework Assignment #7

Create a file with interesting data records in it. Create an Ada program
that will
® invoke procedure GetData to read the file into arrays.
® invoke a function that uses the array(s) to process one value
(call the function whatever you like)
® invoke another procedure to compute values from the array(s)
into a new array. (Name the procedure yourself)
® invoke another procedure called Printlist to values of the new
array.
Remember to document your program well explaining what your program
does.

Assignment #8

Read the following problem and write an Ada program for it, using
subprograms to make it modular in design. Do part a, b, and ¢. Think
about what could be declared local to the subprograms and what may

not.

Personng Salary Budget. The personnel office 10r a state Jovernment agency
@ 1 the process of developing a salary dudget for the next tiscal year. The
personnel filg containg the 'oliowng 1nformation on each employee

G e LN

Empioyee name

Social securty number

Current annual salary

Union code (1 = clencdl. 2 = teachers, 3 = electncai)
Current step in pay schedule (1 through 5)

Year hired

The state agency deais with three lapor unions clerical. teachers, and

electncal Each umion has negotiated a separate salary schedule which enti-
tles each empioyee 10 an annual step increase. The salary schedules are listed
in the table below. Each employee s hirgd at the lowest step 0 the salary
schedule for their union. and Moves up one step each year The fieid ‘current
step in pay schedule ' indicates the empioyee s step prior to the new salary for
the comng year: that & “current annual salary’ s consistent with this step.
The salary ‘or the upcoming year 's 10 D& Dased on tne next highest step.
Emplicyess #ho have reac™ed step 5 are at the maximum sa'ary level for that
100 Thus, nexi year's step salary :s the same as thewr Current annual salary.

in adcithon tg the salary step ncrease. empioyees who have Heen em-

- ployed by the state for 10 years or more are entitiec (0 a longevity ncrease. A
longevity increase represents a S cercent .ncrement added to the employee s

new step salary.
Salary Schedules
Step Clencal Teachers Electnical
1 20178 29133 INT0
2 20%92 30433 44260
3 20956 #1833 6668
4 21320 23333 49501
s sl 3 34833 201
Personnel File
SMYTHIE SMILE 032166789 10956 1 3 t
ALFRED ALFREDO 123454321 13333 2 4
MENDAL MICKEY 987654345 22807 23 5 4
. FIELD ALORA 543297541 12170 3 -1 @8
— CURRAN CURRENT 045811222 10176 1 1 76
HANDEL HALO 315791123 11320 1 4 40
UNKIND CORA 129834765 My 2 1 78

Prepare a flowchart and write a program that prints a budget report for the
personnel office. Output from the report inciudes emplioyee's name, cur-
rent salary. increase in salary due to step, increass in salary due to longev-
ity,_and new salary. Following the output table. print totais for the four
numeric columng. Treat the salary schedules as a two-dimensional (5 x 3)
array that is to be read in. Data in the personnel file and in the output tabile
nged not be treated as arrays.

Print a table which summarizes the salary budgets as follows:

SALARY BUDGETS

CLERICAL $ xxxxxx
TEACHERS $ xxxxxx
ELECTRICAL § xxxxxx

$ xxxxxxx

Print the table of part b prior to the output in part a. Mint. Unlike part a.
now you must subscript both the variables in the personnel file and the

output in the report of part a. Do you see why? Use two-dimensions!
arrays.

Appendix D

CSO051
Projects

Cs 51 Project 2 SPRING 93
D. Pinto/S. Honda

DUE : FEB 22

USING THE SAMPLE STACK PROGRAM(S) GIVEN IN CLASS, CREATE A MAIN
PROGRAM TO READ IN UP TO 100 INTEGERS. THE STACK SHOULD BE ABLE
TO HOLD A MAXIMUM OF 20 NUMBERS AT ONE TIME.IF THE INTEGER INPUT
IS EVEN (BUT NOT 0), THE INTEGER IS PUSHED ONTO THE STACK. IF ODD,
THE STACK IS POPPED.IF O IS INPUT , THE PROGRAM SHOULD

TERMINATE.

WHENEVER A VALUE IS POPPED FROM THE STACK , AN APPROPRIATE
MESSAGE SHOULD BE DISPLAYED. IF EITHER STACK 1S EMPTY OR STACK

IS FULL , AN APPROPRIATE MESSAGE SHOULD ALSO OCCUR. All CASES
SHOULD BE COVERED , IE. , THERE SHOULD BE AT LEAST ONE INSTANCE OF
EMPTYSTACK AND ONE OF FULLSTACK.

Cs 51 SPRING 93
Project 3

due : March 22

The Bashemin Parking Garage contains a single lare that

holds up to fifteen cars. Cars arrive at and depart from
the same end of the garage.

Zf a custcmer arrives to pick up a car that is not

on the end , all cars in the way are driven out,and then
restored in the sane order that they were in originally.

Write a program that reads a group of input lines. Each line
contains an ‘a2’ for arrival or a ‘d’ for departure and a license
plate number. Cars are assumed to arrive and depart in the orde:r
specified by the Input. The program should print a2 message 2ach
~ime that a car arrives or departs. When a car arrives , the
messaga should specify whether cr not there is rccm in the
garage for the cax. If ther2 is no room for a car , the ca~
waits in 2 queue untll there 15 zcom cr until 2 departur

iine is read for the car.

When room becomes available , another message should

re printed. When a car departs, the message should include the
number of times the car was moved within the garage (including
the departure itself but not he arrlva-). This number is zero i:
the car departs from the waiting lire.

CS051 Project 4
Spring 93

1.

Due : April 13

Using the linked list program given in class, alter the program
to input twenty five strings, sorting them alphabetically as
they are inserted into the list. Print out the sorted list.

Now, using the above input ten strings. If the string is
present in the list, delete it, otherwise insert it in its
proper place. Print out the list after each insertion and
deletion.

CS 51 Project 5 Spring 93
Pinto/Honda

Due : May 10 2001

Using the tree programs enclosed , write a program to input
wenty five strings into the tree. The program should print out the
norder traversal for the tree. Then, compute the levels of each node
n the tree and print out the maximum and minimum leaf levels. Do this
>r ten runs , (ie. ten different trees , and compute the average max
nd average min leaf levels) ENJOY!!!!

HAPPY SUMMER!!!!!!

4

Appendix E

Exams

Name: Date:
CS050 Fall 1992
Exam !
Part I Give an example of the following: (1 point each)
1. assignment statement

2. discrete data type

3. logical constant

4. numeric expression
5. logical expression
6. relational operator
7. character constant

8. logical operator
0. generic package
10. ada lexical unit

Part II. Express the following flowchart segments as appropriate Ada instructions.
Assume the declarations are done. (5 Points per problem)

S -

- Input X X

v

9
CINPUT Y

F ,/KQN T
— <

OR e
\;sts/

)[N —
/ F] ' \4
Y<I0O=5(A ° X=X+5 , INPUT A /
; -
T OUT X '
C=A*32
Y=Y+10 F —
~X>545
OuUT X,Y
V2 \' '
T OutC

Part 1I1. Program the following in ADA. (Write the entire Program).
Mr. and Mrs John Doe need a program to compute their income tax and are

trying to decide whether to file a Joint or Separate return. Mr. Doe's taxable
income is $18,750 and Mrs. Doe's income is $20,312.

For Separate Returns:
Taxable Income $18,000 - $20,000 Pay IRS $1630 + 28% of the
taxable amount over $18,000

Taxable Income $20,000 - $22,000 Pay IRS $2190 + 32% of the
taxable amount over $20,000

For Joint Returns:
Taxable Income $36,000 - $40,000 Pay IRS $3960 + 29% of the
taxable amount over $36,000

Print out the following:

1. How much each of the separate returns for Mr. and Mrs. Doe will be,
2. How much the joint return will be, and
3. A message indicating which way the computer thinks they should file:

(separate or joint) Returns.

Name

Date

<NTmMmOC»>

Fall 1993

CS050A

Exam II

Write an Ada program containing a function and a procedure that will do the
following:

We have three sensors, Sensorl, Sensor2, and Sensor3 on our system, each of
type Sensor_State which can be HIGH, MEDIUM OR LOW. If Sensorl is
HIGH, Sensor2 and Sensor3 are MEDIUM, the alarm should be set on. If
Sensor 1 and Sensor2 are HIGH the alarm should be also set on. If sensor3 is
HIGH, the alarm should also be set on.)

Write an Ada program that will

1. Call a procedure called GET_DATA to input a record containing
a system code and three sensor values from a file called
DATA.DAT. (see file below) to check the state of the system at a
certain time.

2. Invoke the function called ALARM_ON to return a logical value of
TRUE if the alarm should be set on; FALSE otherwise. The
function should determine from the sensor values whether or not
the alarm should be set.

3. Say, '21% ?‘o‘rl‘)."aur fe! *** system” ___ "about to blow!", if the
alarm’is set, or another appropriate message if the alarm is not set.

DATA.DAT (field values are system code, sensorl, sensor2, and sensor3)

MEDIUM LOW LOW
MEDIUM LOW MEDIUM
LOW LOW Low
LOW MEDIUM MEDIUM

MEDIUM MEDIUM MEDIUM
MEDIUM HIGH MEDIUM
MEDIUM HIGH HIGH

Part I1.

1. Declare a variable Season as a Season_Type (SPRING,SUMMER,
AUTUMN,WINTER):

2. Declare a variable Forecast as a Forecast_Type (RAIN,SUNSHINE,
PARTLY_CLOUDY,SNOW):

3. Assuming that the following procedures have been defined:
CLEAN_THE_HOUSE
FLY_A_KITE
GO_SAILING
CARVE_A_TURKEY
SHIVER

4. Wirite a case statement testing the variable Season to do the following:
for each of the 4 Season_Type values, assign an appropriate forecast_type
to forecast, print appropriate message(s) and select appropriate
procedure(s) to run.

Name

CS050

Part [.

Fall 93
Ada Programming

Final Exam

Write an Ada program that will analyze stock information. INPUT consists of
ID and QUANTITY_IN_STOCK for each of twenty five products.

Write a Main program that will call four subprograms called INPUT,
CATEGORIZE, OUTPUT and LIST.

INPUT should read the identification numbers, and quantities in stock, into
two arrays called ID and QTY.

- CATEGORIZE should determine the number of products whose quantity in

stock fall into each of the following categories.

500 or MORE
250 to 499
100 to 249
0to 99

OUTPUT should output the number whose quantities in stock fall into each of
the following categories:

500 or MORE
250 to 499
100 to 249
— 0to099
LIST should output Product ID, the QTY in stock, and a message to reorder
immediately if quantities fall below 150 of the products in low
quantities. (under 150).

ID QTY MESSAGE
ITEM103 121 *«* REORDER***
ITEM114 32 »**REORDER***
ITEM165 140 ***REORDER***

ITEM212 99 ***REORDER***

Part II.

Note the following program below.

with text_io; use text_io;
procedure fin is

message:string(1..18);
joe:file_type;
begin

open (joe,in_file,"file.dat");

for i in reverse 1..18 loop
get(joe,message(i));

end loop;

close(joe);

for jin 1..16 loop
put(message()));

end loop;

new_line;put(" ");

for i in 1..3 loop

put(message(17));
put(message(18));
put(message(16));
end loop; new_line;
end fin;

FILE FILE.DAT

0]

H

!

A -

X —

A

M

I

K

I

L

A

K

2t

What will be the expected output?

Part III.

Write a program that will read a file called Numbers.dat that contains §
records of S integer values to detect if it is a magic square or not. Read this
into memory in a variable called Magic. Magic should hold five rows and five
columns of integer values. Your program should check to see if all the sums
of the rows and all of the sums of the columns, the left diagonal, and the right
diagonal are of equal value. If the sums are all equal, this is a MAGIC
SQUARE. Your program should print out whether or not the values input
form the file make a magic square or not.

Part IV. Answer the following questions:

Some of the goals of software engineering are

modifiability
efficiency
reliability
understandability.

1. How are these goals met by the Ada language?

Some of Ada’s features

generic components

separate compilations of modules (information hiding)
packaging concept

subprogramming modularity

strong typing

separation of specification code from implementation code

2. Now that you have been exposed to Ada language, list and describe some of
Ada’s features that can be used as a software engineering tool to aid in the
design of software projects.

Name :
CS0s1
Exam I
Do all work on paper provided ...Show all work!!!
L Find the output for the following segments of code

CLEARSTACK (S);
Z:=10;
PUSH (S,2);
PUSH (8,9);
POP (S,A);
PUSH (S,2*A);
1= 4*A;
POP ' (§8,Y);
PUSH (§,X+Y);
Y:=A+X;
POP (§,X);
POP (§,Y);
PUSH (S,A);
POP (§5,2);
PUSH (S,Y*10);
WHILE NOT EMPTY (S) DO
BEGIN
POP (S,A);
WRITELN (A);
END;
WRITELN (A,X,Y,2);

IL. What iS output by the following segment of code?

CLEARSTACK (STACK);
PUSH (STACK, 1);
WHILE NOT EMPTY (STACK) DO
BEGIN
POP (STACK, N);
WRITE(N);
IFN<=6 THEN
BEGIN
PUSH (STACK, N+1);
PUSH (STACK, 3*N-1)
END (* IF %)
END; (* WHILE *)

Spring 1993

Section A - Honda

III. Write the following declaration of a variable called COST. It should look like this
in primary memory: [want to store the average prices for a 4-Door, 2-Door, and the

sports coupe for 1986,1987,1988,1989,and 1990.

GM FOUR-D TWO-D SPORTS-COUPE
CHRYSLER J. l
PONTIAC [

SABB T
HONDA
NISSAN
for 1986

IV. Write a complete program to input up to a maximum of 10 decimal numbers into an
array. The program is to use a procedure to reverse the values in the array and also

to count the number of negative values in the array.

NAME SPRING 93
Cs 51
FINAL EXAMINATION

I. GIVEN THE FOLLOWING SET OF INTEGERS , PLACE THEM IN A TREE
USING THE INSERTION ROUTINE GIVEN IN CLASS. DRAW THE TREE.

60 56 87 98 34 65 23 11 90 69 45 62 53 89 14 9 100 81 33 59

WRITE OUT THE NODES

INORDER

POSTORDER

PREORDER
SUPPOSE YOU WANTED TO INSERT 77 AND 41 AND THEN DELETE 65 AND 9
DRAW THE TREE AFTER THESE FOUR OPERATIONS

II. WRITE A FUNCTION NUMLEAVES THAT RETURNS THE NUMBER OF
LEAVES IN ANY NONEMPTY BINARY TREE WHEN GIVEN THE POINTER TO
THE ROOT OF THE TREE.

III. SHOW THAT A COMPLETE BINARY TREE WITH N LEAFS CONTAINS 2N-1 NODES.
DO THIS FOR A FEW EXAMPLES AND TRY TO REASON YOUR WAY THROUGH
THIS MATHEMATICALLY.(NB COMPLETE MEANS LEVELS ARE AS FULL AS
POSSIBLE)

Iv. GIVEN THE FOLLOWING TREE , SHOW HOW THE PREORDER RECURSIVE
FUNCTION WOULD OPERATE (IE . PERFORM A TRACE)

31
/ \
24 54
/\ \
12 25 76

2 14 27 88

GIVEN THE FOLLOWING CODE , ASSUME WE HAVE THE TREE LISTED
ABOVE. TREE POINTS TO THE NODE CONTAINING 31. WHAT IS THE
OUTPUT?ASSUME ALL STACK OPERATIONS.

ClearStack(PtrsStack);
Ptr := Tree;
REPEAT
WHILE Ptr <> NIL DO
BEGIN !
WriteLn(Ptr .Info);
Push(PtrStack,Ptr);
Ptr := Ptr ".LEFT;
END;
IF NOT EmptyStack(PtrStack) Then
BEGIN
Pop(Ptrstack,Ptr);
Ptr := pPtr”.Right;
END
UNTIL (Ptr=NIL) AND (EmptyStack(PtrStack))

Appendix F

Articles

\ -

‘UOIN0Q Ul IV BIOYI0 S[iYyMm ‘ssou
~isnq M} JO YOnW $90p Auvdwod
oy} siega “O g ‘uojduiyse
ul Yi0M (00'Z1 INOQY ‘wlIEN
-peoy Mw10diod 0) swioy 81 138
Mu_._i PUs §961 U} popunoj sem
uedwod o} wsym ‘opunieg
1@ W yom ssehordwme 009'03
, s,Auedwmod eyqy jo gog Inoqe
4190 "'VBYN Pav Aesiop moN Jo
#7"s o ‘seewq Areyijym epnjou)
U s seuepg 0ndwmo)
- Anenpay amndwod

* 39vVd HOvE/08d

oM §IVO Y1) Ppee (jia uoisialg
swaisdg pajwadajul s fuvdwmod ay,
"}Iv[jop uoyIw’ peap
-UNY [WI3A08 JIOM 9q AjjojuNnod pnod
‘{oddng sopisiSor] puw uonieinboy n_._-
_simndwo) hn.a np ‘meysds oy Suydo
-[aep puw By ‘uonnedwod uls
-9p [Pniul o 205 PRNUOD UOHIM L'TE
* ‘iuow-g1 ¥ 95D pepIeMe Aury e,
‘SWNAS uo
~dvems Suymwmiuiem puw SulAng 10) SMp
-00d sduuy ‘g Yy ur ysomseded
.o.uu U0 UMOp U0 18 powie wejshs ®
180p 0} Suluun: o) Uy sIjuRdmod snoj
JO 2uo ¥ PajdelIe wveq 1 o Awp
“BJd 199 jJusmedumouuw s Auedurcd eqy
JO 9193y a3 U0 SIWOD preME YV oYL,

oy ut Auwduiod SaJ1AIIS-jBUOLS
-89joid juspuadapuy 8ediv] 3y
" OSD ‘wdkoidwd 00Q'07 pue
uoIfliq €'1$ JO sANUAAM YUM
-.w.z ‘Yiepey ‘seowy sw
-8Ag juewleuwy pus y91)
NUEA ‘emdedg uonjemioy
-U] 1990 19\ ‘vleqieg WUy .
*di10) YoIwesdy [wieudr) ‘sinoy |
98 “dio) seiinoQ [PuuoPW
Jo mMEucd wea 9§50 WL :
' 'siywnbpesy
.wz.nus!sz.:__.__aﬁ“

| 19 39vd ous 989

-od Suta[osez puv Sunoipaad ‘suwid 1Yy
Suisessoid 105 epod wpy jo seull 000008 -
usy) elow M |jia Ausdmod], -

‘Pres 980 oW
‘uorIwE QOLS UWY) elow 0} OO oY)
30 anjea o) Juuq Ajenunod pmod 0107
ynosyy poddne pue poued eseq o)

‘Pre® oY ‘UOHEWOINT POSPIIIUY
oy} Jo e ¥ W payedpPpiue) S9[OS}
-Uod JO IOqWMU oY) U} UOKHINPAS ON

‘MY uo wonvwLIoul 0)
995008 19789) SULMO[Y ,‘PUOIOUN) JUNOI
10 [SIUAP oY) JO AUTW FPWOINY [[Im
N nq ‘sausidite jo Suloau0d oY) NVW

‘uoq 9'E$ 0] % WHAE uopwmoIny

PeOUvApY o) 20) Penuco swud oy,
‘8861 J9quIaAoN

ut SupuuiSeq ervek g wueds Qorym ‘yiom

~0IN¥ 100 [[1A 3], "PIVS JVLI] ,‘3IWM)jOD
oY} 09 JInQ ‘WNAS 913 Ul UOIIPWOING
JO JUNOWIV PIseeIduT U oq [[Im 9I9Y],,
‘pPres JeLIv] ‘eIvm)jos pjo
Sayen (e Inq pepeisu; Apsaspe smnd
~EI00 NE] 40U ¥ JOJ 8] SIWM)JOU YL,
. ..03
“jare wejsde Bujzieuv puv SIe[jONU0d
Jyyea) e Suyurer) ioj suonENYE djjJea}

i Supemus ‘wep Joyjem Suipiaoid,

‘wed YRy YeIuIY uf HINYUCD [P1IU)

Suymp jiom [euonippe ioj suondQ
"Aeg yInog ey ul paye
-010 oq [[14 8qof MU ON ‘PN ‘UOVOA[E)
ul UOIBIAL(] SIUNE WNSAG 8, Auedwod
oy} 38 pawiojied oq |na Niom ey,
‘oSvnSuw Suimwmeal
-03d jueWUIeA08 pIwpums oyl ‘vpy U}
UMM oq I sureaBoad ey], ‘savmy)os
oY) |wsnur puv [Wsu; ‘499 ‘dojeacp

10} 9q [|!4 Ji0m oy Jo eseys 8,950

‘Jeire g pelg uvwmisejods yyJg

a0 6861 ‘9 Jlequardas
AVQSINGIM

Iz33ag] Are(]

o) 10) 10908nucd ewruad aqy ® NdI
*opedep 1X0U Oy} Wy NYjen
i» po Suyqnop pRdPRUS Y A [Sop
0} Apess mnndmoo oy 398 wonenMUTM
-py wopwAy [eiepsy oy dieq 0f ‘dio)
SWURPUJ SOUNg [PUOHIWINU] il
18U0O uoYTE EI ¥ peuds sey “dio)
seouepg 10pndwio)) peseq-opundag (3

VUMM 30VSONIY
cspueng e ig

1oed voru $C1$ SUSIS DSD

Vol. 8, No. 15

WASHINGTO N

November 4, 1993

TECHNOLOGY

The Business Newspaper of Technology

By Emmett Paige Jr.

Emmett Paige Jr. is Assistant Secre-
tary of Defense for Command Control
Communications and Intelligence.
This article is adapted from a speech
to a recent ADA dual-use workshop.

the sake of Ada. If | didn't be-

lieve in it, if | didn't think it was
necessary, | never would have
been a supporter of it since 1979,
when | moved across the highway
at Fort Monmouth to find out what
it was all about.

The whole reason for Ada, in
the first place, still exists. The
need today is probably greater
than it ever was, greater than it
was then. And a lot of people that
didn't even believe in automated
systems back in those days are
now belicvers in automated sys-
tems.

Ada has been a standardized
programming language—since
1983. Since its introduction, DoD
and the software engineering com-
munity have benefiticd greatly
from Ada And with the features
that Ada 9X promises to bring to
the table, things will get even bet-
ter. While we took some early heat
because of lack of quality and vali-
dated compilers in the early days,
the results to date show quantita-
tively that Ada makes sense, both
technically and from a business
point of view.

Needless to say, the policy offi-

i3l in DoD who's responsible for
1is irmly committed to the Ada
strategy. Any speculation that
DoD is wavering on the commit-
ment to Ada is wrong. Based upon
the results that we've seen, we

I’m not a supporter of Ada for

have no compelling reason to re-
think our Ada strategy.

This strategy uses Ada as the
kingpin to bring a software engi-
neering discipline into DoD. And
in my humble view, we have held
Ada too tightly in the past. As
someone said, it's just not getting
enough air, and we've got to
loosen our grip.

Based on my experience within
the Department of Dcfense, com-
bined with my recent experience
in the private sector, there appears
to be a common misconception
that Ada has not received the level
of support that is necessary to en-
sure its acceptance within all of
the Department of Defense and
the commercial sectors.

I know for a fact that there are
many private firms that have em-
braced Ada. I've read that Silicon
Graphics is using Ada in some of
its virtual reality simulations. I'm
sure that they would not be using
Ada if they did not think it was the
best language to use for the partic-
ular purpose.

NASA and FAA are using Adain
their major projects. Certainly, we
will not blame all of the computer
problems and other disasters that
NASA has suffered in the past few
years to their use of the Ada lan-
guage. Likewise, we cannot blame
FAA's use of Ada for the program
delays that they’ve encountered.
Many firms overseas, like Ferranti
(for nuclear electric applications)
and Nippon Telegraph and Tele-
phone are using Ada with positive
results.

However, while I have not wit-
nessed these examples firsthand, |
nonetheless feel that Ada has not
penetrated the commercial sector
to the degree that we, within DoD,
had hoped. The Ada market is per-

ceived as a niche market by many
of the vendors that | talk with. And
I believe there is a lot of truth to
this assessment.

We've got to increase the appeal
of Ada outside of the Department
of Defense and outside the federal
government Else, we will forever
have to carry the burden of the in-
dustrial tower of language Babel
on our shoulders. While we are
not afraid to continue our invest-
ments, the best of all possible
worlds would be one in which the
market caused others to spend
their own money to enhance their
market share of a larger Ada mar-
ket internationally, The pull needs
to accompany the push. Else, our
chances oi success in the future
will be limited.

I would like to see U.S. compa-
nies leading the world-and build-
ing jobs in this country producing
applications using the Ada lan-
guage. In my view, we in the fed-
eral government have tried to
prime the pump with Ada, but we
have failed to find the answer to
cause the commercial sector in the
U.S. to pick up the Ada baton and
use it for their own purposes.

A few years ago, | used to say
that the day we see |BM adopt Ada
for their commercial systems will
be the day that we can say Adahas
arrived.

Well, today w ¢ see Microsoft
and Borland using Ada. We can
say that Ada has arrived.

There are other issues as well.
A lot of people still believe Ada is
overkill, slow and non-responsive.
Well, we've come a long way in the
area of performance. The bench-
marks indicate that most Ada ap-
plications run as fast and are more
robust than their counterparts in
other languages. With regard to

Copyright © 1993 TechNews, inc. Al Rights Reserved

An Endorsement at the Top

DoD Needs to Increase the Appeal of Ada Beyond Its Own Halls

- - R S

[SAT RS B ot Ll

richness, this has never been a
handicap to those properly traincd
in software engincering and Ada.
As a matter of fact, they love the
capabilities the language providcs
them.

The availability of quality com-
pilers, tools and environments (in-
cluding linkages) has also been
raised as an issue in the past Wcll,
we've come a long way in this arca
in the past 10 ycars. Those of you
old enough to remember the carly
compilers will recall, as 1 do, the
inefficient beasts that consumed
whole machincs. Today's compil-

continued on back

Large Ada projects show productivity gains

Ware Myers, Consnibuting Editor

After years of development and an ini-
tal skeptical reception, many people are
now using Ada and saving that they like
it At least 91 projects have been com-
pleted in Ada. 103 are under deveiop-
ment, and 38 are in the planning sage.
according to a March survey by the
Defense Dept's Ada Joint Program Of
fice. About |3 percent of these 241 proj-
ects were large: more than 100,000 lines
of source code: more than 3 percent
have more than 500.000 lines. The survey
covered Defense Dept., commercial
domestic, and foreign projects.

The in Ada’s use has been
helped by favorable reporu from earlv
adopters (“Ada Catches on in the Com-
meraal Market.” Soft News, [EEE Soft-
ware. November 1986, p. 81) and by the
growing number of validated compilers.
As of June there were | 29 validated base
Ada compilers and 63 derived compalers.

But not evervone has the tools needed.
“A surprise is that Ada s as far behind as
itis. The support environments aren 't
there: tools. compilers. prototypes, bind-
ings.” saud Howard Yudkin, chief execu-
uve officer of the Software Producavity
Consoruum. a | $-member group of
defense contractors based in Reston, Va.

In Europe. the lack of Ada environ-
ments on |BM and Crav computers —
the computers used for atomic energy
and other large projects — has con-
strained use of Ada, said Annie Kunu-
mann-Combelles. managing director of
software engineering and applications at
CISI Engineering in Rungis, France.

Large productvity gains. The largen
embedded system completed to date is
the US Army’s Advanced Field Artillery
Tactical Daa System. said Allan Kopp,
the Ada Joint Program Office’'s deputy
director. The system entered formal qual-
ification testing in July. The project re-
sults show that Ada can greatly increase
productivity for large systems.

Release 4.04 of the symem conuins
1,175,498 noncomment lines of source
code and 7,553 files. All but 3,000 lines of
operating-#ystem and communication
software were written in Ada.

The line count does not include reus-
able software, such as math packages, not
developed on the project. Moreover. re-
usable software developed on the project
was counted only once. Roughly 13 per-
cent of the delivered software was reus-
able. This reuse saved 190 man-months
of effort (a9-percent savings) and re-
duced the schedule by two calendar
menths (a 4-percent savings), said
Donald G. Firesmith of Magnavox Elec-

November 1988

tronic Systema, the system's contracior.
Magnavox expects W increase the reuse
rate to 25 percent on the next similar
projectand believes that a rate of 50 per-
cent is possibie, he said.

Productivity for the execution environ-
ment - including the operating svsiem,
daa management. informagon manage-
ment, communications support, and
communications intrface — was 550
lines per man-month. Firesmith said. Pro-
ductivity for the applications software —
including fire-support planning, firesup-
port execution, movement control, and
common functions — was 704 lines per
man-month, he said.

The Magnavox rates exceed the aver-
age productvity of the 1.500 svsiems in
producuwity consulant Lawrence Put-
nam's database: 77 lines per man-month
(atthe | 2-million-line level).

Magnavox found that using Ada meant
that more ume went to requirements an-
alyms and less to integraton and testing

in one project, Ada’s
object orientation meant
that 90 percent of the
code was very small,
simpilfying system
integration and test.

than is typical on traditional projects,
Firesmith said. Requirements analysis
and design wok 55 percent of the effort,
coding took 10 percent, a1. 4 testing and
integration took 35 percent, he said.
Ada’s object orientation meant that 90
percent of the code was very small and
simple programrming units, which
caused far fewer problems during inte-
gration and test, he said.

Magnavox also found that Ada-
oriented development methods, such as
object-oriented design, are not compu-
ible with the functio
methods or waterfall lifecycle models
that have been commonly used in
Defense Dept standards, Firesmith said.
(The recendy revised DoD-Sud-2167-A is
methodology- and language-neurral.)

Other projecws. Several companies
have shown similar results with Ada:

¢ Nokia informadon Systems has com-
pleted 2 million lines in a variety of sys
tems for the Bank of Finland. In the early
1980s, Nokia built a compiler, operating

svstem, and environment — all in Ada.
The resuls of the banking project have
been 10 succewsful that Nokia plans tode-
velop it next pointof-sale stemin Ada.
¢ Boeing Acrospace decided three
years ago to standardize on Ada. for both
defense systems and its commercial air-
craft. The new Boeing 747-400 plane now
contains 500.000 lines of Federal Ava-
tion Adminisgrauon flightcerufied Ada
software, most of it produced hv subcon-
tractors. The cost savings may be as high
a3 30 percent. said Boemng's Brian Pflug.
¢ France's CISI Engineering saw a pro-
ductivity increase of 20 percent com-
pared to C. Fortran. and Pascal in soft-
ware-engineering<ool projects. said
CISI's Kunzmann-Combelles. A team
welltrained and experienced with Ada
increased its producuwity from 40 lines of
code per man-dav to 80 lines. but she cau-

"tioned that less experienced program.

mers would do less well.

From 1984 10 1986, the European Com-
munity had a special disemination pro-
gram for Ada. which West Germanv and
Britain were verv active in, Kuntzmann-
Combelies said. France’'s Defense Minis-
uy recentlv mandated Ada for real-ume,
image-processing, and robatics svsiems.

The US Defense Dept. has strength-
ened its mandates to use Ada. and several
nonmilitary agencies — inciuding the
Nadonal Aeronautics and Space Admin-
istration and the Federal Aviauon Admin-
istration — are turning o Ada.

* Lockheed Missile and Space Corp. is
several vears into the Ada development
of the Air Force's 400.000-line Milstar svs-
tem for control-, command-. and tele-
metry-processing for a spacecraft.

¢ The Air Force's Advanced Tactical
Fighter will require $ million to {0 mil-
lion lines of code for on-board and
ground-based software. The compenng
prime contractor groups — led by
Lo.kheed and Northrop — both pro-
posed to use Ada.

¢ NASA has commiued to Ada for the
10 million lines of code that the Frasdom
space station is expected to need. The
agency isswitching from its long-ume lan-
guage. Hal-S. The agency has done more
than 150 projects in Ada in the fast five
vears. Pilot projects total 313.000 lines
and production efforts total 446,000 lines.

¢ The Euro Space Agency recendy
decided to use Ada for its Columbus space-
station module and Hermes space shutde.

* The FAA will use Ada as the high-
order language for its Advanced Autom>
tion System, an air-traffic control svstem
estimated to require 1.5 million lines of
new code. Air-raffic control svstems for

Belgium and Spain are also using Add.

IEEE Software 89

PRI TI SRV SR To]

TR e N T ol Y

I'BM For es Links to Ada V Vendors

To Enhance Role in Aerosrace Market

BoOsSTON

|
|
1
]
}
1
I

 tain View, Calf.,

Imcrnanonal Business Machines has
signed marketing agreements with three |

. Ada software and hardware vendors to
make 1t easier {or acrospace companies to
use IBM computers to design and run soft-
ware in Ada. a high-level programmung
language developed by the Defense Dept.

The agreements, signed late last year
with three of the leading vendors for Ada
compilers and related tools, will allow
IBM sales representatives to make joint
calls with companies that enjoy consider-

able Ada business with aerospace defense .

contractors.

DETAILS OF PACTS

The three agreements are as follows:

@ An Industry Marketing Assistance Pro-
gram agreement with Rauonal of Moun-
a company that
specializes in Ada development tools. This

., will allow [BM to market the R1000 De-

velopment System. which consists of hard-
ware and software 100ls needed by teams
of 10-30 or more programmers. The soft-
ware suppor system includes an Ada com-
piler, which allows programmers to write
in Ada and to have 1t automatically trans-
lated into machine-level instructions.

® A Marketing Assistance Program with
Alysys, Inc., of France, which allows IBM
to market Alysys's Ada compiler for IBM
370<lass computers running on an 1BM
operating system.

® An Industry Marketing Assistance
Program agreement with CRI Inc., of
Santa Clara, Calif.. that allows IBM to
market CRI's Relate/DB relauional data-
base for IBM's 9370 minicomputer and
4281 mainframe. The database works

; with an IBM operating system.

Last year the Defense Dept. mandated
the use of Ada for all new weapon system
software developm.nt as well as for more
general types of computing. The Penta-
gon wants to standardize on this lan-
guage. rather than continue using a
variety of incompatible languages. such as
Pascal. Jovial, Cobol and Fortran.

Industry officials say that IBM, the
world’s largest computer manufacturer,
has been late in recognizing the impor-
tance of Ada. Recent IBM moves are an
attempt to catch up, these officials say.

*1 think IBM came late in the game.
Now that they are in, they are starting to
be more aggressive,” Kevin J. Dyer. who
IS project manager .Or Adanet. a West
Virginia-based development network for

. Ada software applications, said. “They
« had therr toes in the water. Now they're
*1n up to their knees.”

1.

Ratisnal selis thres medeis of the R1000 Develepment System. Mede! 10 (-
10 pregrammors asing muitiple workstations. Model 20 (right) supports ap ts 20 pregrammers. -
. The Model A0 systom (Canter]) supperts up ts 4D programmers.

) can support g te

i Whether the Defense Dept. and aero-
space contractors engaged in developing
« billions of dollars worth of computer pro-
grams for weapon systems will decide to
use IBM hardware may depend on the
availability of associated Ada tools that

thousands and even mullions of lines of
software code in Ada.

The use of computer hardware and soft-
ware tools to support programmers work-
ing in Ada is called computer-aided
software engineering (CASE). Today, the
CASE tools for Ada development, includ-
ing hardware and software, are just being
developed to the point needed to accom-
plish the massive programming tasks
found in large defense systems. IBM be-
lieves that the CASE market will take off

make 1t possible to write hundreds of '

and it wants to be in a position to capital- -

1ze on this. IBM also wants to sel its com-
puters for use as embedded systems

. dependent on Ada for software develop-
. ment.

Ada s supposed to make it easier to |
maintain sofiware programs once they are '
in the field, an area that accounts for as
much as 80% of the Pentagon's software
costs. Ada is also supposed to allow pro-
grammers to create software modules that
could be placed in a library and reused .
later, since a section of code that performs
one function might fulfill the same func-
tion on the next weapon system project.

Digital Equipment Corp. meanwhile 1s |
well positioned in the Ada environment
due 10 its early commitment to the lan- |
guage. Digital has one of the earliest and
most successful Ada compilers.

The IBM agreement wath Rational -

BOSTON

IBM Division Wins Bid to Develop |
Mission Computer for Navy's ATA |

he McDonnell Douglas/General Dy-
namics team for the U. S. Navy A-12
advanced tactical aircraft program has se-
lected IBM's Federal Systems Div. to de-
velop the aircraft’'s mission computer.
The dollar value of the contract award-
ed March 14 has not been disclosed. The
ATA project is often cited as one promi-
. nent weapon system program using the
Ada high-level programming language for
software development. IBM will supply
; the hardware while McDonnell Douglas
| will program the software in Ada. The
harduare will incorporate Very High-

Speed Integrated Circuit (VHSIC) (ech
nology. according to IBM officals. i
The ATA mission computer system ,
also will incorporate common anomcst
modules as part of the Defense Dept. s'
initiative to promote standardization ‘1
among the armed services. l
IBM's Federal Systems Div.’'s Owego.
N. Y., plant will perform the development "
work. A Navy official said dual supply ! ;
sources will be used on the 30 highest «
value ATA subsystems. and a McDonnell -
' Douglas official said a second source will !
; be chosen for the mission computer. Z

"

AVATICN WEEK & SPACE TETHNT. OGY Marir (2

.

e~ -

" cause the R1000 Development System in-
cludes Rational-develnped hardware—not | R1000 on e Nauonal Test Bad contraat

IBM hatduare Ada indusiny officaalc

+ conudered 1t unusual for I1BM to help

company market non-IBM computer
hardware Bur the R1000 would work 1n

tandem with 1BM computers to perform

software deselopment functions

' CONTRACTS LOST
. Another reason fur IBM's recent moves

in Ada 1s that 1t had lost out on some key
U S government contracts. including the
software support environment for the

" NASA space station This contract. won
. last June by Lockheed using 2 Rauonal
system for deselopment. is valued at $140

mithon It 1s expected that the task will

" require 10 milion hnes of Ada code

" Lockheed has owned 109 of Rational

since 198¢ and has one of its top execu-
tives on Rational’'s board of directors

Ranonal has grown to prominence in
the Ada market since tts formation as a
starfup tn 1979 by two ex-Air Force offi-
cers who left the service after working on
computer programs designed to track sat-
elhites

Today. customers for Rational’s R1000
Derelopment System come predominant-

" lv from the aerospace industry. and tn-
© clude Lockheed. Marun Manerta. TRW.
' Hughes. Rockwell. General Electnc. Wes-
* tinghouse and the Aur Force—just the

sort of customers IBM wants 10 do more
business sith 1n an Ada ensironment
Rational also has business overseas

The R1000 system is being used by Phil- |

ips Elektronikindustner to wnte Ada

code for an electronic command and con- |

'
i
|
¢
i

trol system to be used on four new Gote-
borg-1ype coastal conettes for the Royal
Swedish Navy. Rationa!l officials say the
Philips programnung work 1n Ada s the
largest single Ada project in full-scale de-
velopment 1n the world. with 140 soft-
ware engineers working on 1 million lines
of Ada code

The R1000 has madels ranging 1n pnce
from $295.000 for one sening up to 12
programmers and $795,000 for one serv-
ing up to 40 programmers. Assuming 40
software engineers use one, 8 productivity
improvement of 5-10% is needed 10 break
even on the cost of a system. Rational
claims its system can improve productivi-
ty from 25-300%, resulting in savings of
up to $28 million on a project involving
800.000 source lines of Ada code.

The Rational R1000 s useful for soft-
ware engineering of 100.000 to 1 mullion
hines or more of Ada code. Lockheed Mis-
siles and Space Co.'s Astronautics Div.
will use Rational systems. for example, to
automate the design and development of
software for the WASA Space Station.

. The same arm of Lockheed and GM
- Hughes Electromcs also will use Rational

systems to davelop sofiware systems for

" raned some eyehrows in the industry be- " twa protatypes 0 the advanced Lol

fighter Marun Manctta will alw e an

with the Stratcgw Defense lmitatine Or-
gamization

IBM'\ Federal Syuems D, wlich
tids on Defense Dept contracts. already
owns six R1000 svstems for use v Ada-
related programmung

I1BM officials cite the activines of the
Federal Systems Dy on a number of ey
Defense Dept contracts av indscanon of
the company's urong commitment 10
.Ada One of the largest of these contracts
15 the Army's Worldwide Mihitary Com-

" Honevweil Bull sr France

Ada industry officials b

t considered it unusual for
i IBM 1o help a company
market non-IBM hardware

mand and Contral System (WWMCCS).
Another program won March 14 s the
mission computer for the Nawvy's ad-
vanced tacucal aircraft

However. others in the Ada commumi-
1y point out that the larger IBM market-
ing organization outside of the Federal
Svstems Div has not embraced Ada vet
The agreement sith Rational 1s expected
to make Ada tools more available to this

" part of the organization to support sales

of IBM computers to aerospace compa-

P v T R

desclopicnt gnd THM 8 now i g eticet
pesition e senve these necds g they
Cﬂlt‘fsf

The agreement with Alsays i gnother
evample of IBM aligning itsedf with some
of the leading compames i the Ada vom-
munity Alvsys was founded m 1980 by
Dr Jean D Ichhigh, formerls with Cn
He led the
team that won the worldwide competition
mer three other groups to devclop the
Ada language for the U S Defense Dept
Al lists among 1ts current customen
Ball Aeroxpace Systems, Baeing. M. Don-
nell Douglas. Mitre Corp . Martin Man-
etta. NASA. Singer-Link. TRW . Alhed
Bendin Aerospace. Hughes Asrcrafr.
Lockheed Missiles & Space and Rasth:
eon.

CRI. Inc. the third Ada vendor with
which IBM 1s aligning stself. 15 alse a
long-term player in the Ada market CR1
customer McDonnell Douglas encour-
aged IBM 10 make CRIl's Relate DB da-
tabase arailable on the IBM 970
McDonnell Douglas 1s using the CRI da-
tabase as pan of a system 1o track pilot
traiming data for T3S aircraft under a
U S Navy contract CRI's Relate DB ts
being used by NASA. Lockheed and
Stanford Unnversity on a project to reduce
paperwork requirements for the mainie-
nance of the space shuttle thermal protec-
ton system.

IBM’s long-range plans are to provide
Ada software for all of 1ts computers The
company will expand the number of Ada

" vendors nvolved 10 marketing agree-

nies and even commercial users. Tele- ;
phone compames. for example. are
expected 1o find Ada helpful for software |

ments. As one IBM markeung official
who focuses on the CASE marker said.
*Our product plans will unfold ~ =

l Estimate of Ada Market Potential
in U. S. Aerospace industry

\
J
Kl

i
!
I

1988 1087 1088 1999 1990 1991 1082
THOUSANDS Of PEOPLE DEVELOPING SOFTWARE
1000 1120 1250 1400 1570 1760 19790
PERCINT WORKING ON ADA PROGRAMS
% 6% 12% 2% 30% | 40% 50%
THOUSANDS OF PSOPLE DEVELOPING SOFTWARE IN ADA
30 &7 150 280 471 704 985
"INVISTMENT PER PIRSON WORKING ON ADA PROGRAMS (i Tnousands)
’[$10.0 $100 $100 $100 $100 $100 $100
TADA SUPPORT MARKETING OPPORTUNITY (in Miions)
S0 $670 $:150.0 $2800 84710 §704 0 $9850

| Astmonon a0 of somware Jeves0wrs rows 12% por ree!

Sowce RaB0a Moa~ Vew Zax'

' 180 and ether companies are interasted ia supporting Ads programmers in 2erespacs Decaust the
}'mﬂuﬂvmmnmn-hlhmbnmnmummwn
" 1982. when halt of s taftwars sogissers n the industry are expected ta be werking in Ade.

&y AT.C. AZE- & 32272

COMPUYERS IN AEROSPACE

'Next-Generation Defense Programs
Will Increase Use of Ada Language

da. the high-level computer program- [“I am not impressed. have not been,
ming language developed by the De- | |

fense Dept., 1s being accepted for use in

aerospace and defense programs even |

though 1t is trying to hive down a record
tarmished by exaggerated performance
claims.

“Ada 1s beset with too much hyperbole
for its own good,™ then-Under Secretary of
the Army James R. Ambrose said at the
annual Ada Expo and Special Interest
Group convenuon in Boston. Ambrose,
who retired last month but still serves as a
consultant to Secretary of the Army John
O. Marsh, Jr.. cautioned Ada vendors to
be conservative in statements about the ca-
pabuities of the new language because ex-
aggerated claims do more harm than good.

These candid remarks from a high-
ranking representative of the U.S.
Army-—which has been one of the leading
advocates for using Ada as the standard

| Davip HUGHES. BosToN
I
|
i
i
¢
|
1
i

Dept.—did not mean that the Army has
abandoned Ada, according 10 an Army
official. The official compared Ambrose's
remarks to a pep talk a coach might give
to his team during halftime.

computer language for the Defense

and I remain willing to be impressed,

anything such as Ada.” Ambrose sad
while encouraging the 2.000 attendees to
avoid claiming that the language can be
all things to all people. "What [have
seen thus far has been largely rhetonc.”

The Defense Dept. began developing
Ada in the late 1970s as a solution to the
problems created in the armed services by
the use of multiple computer languages
with poor documentation. This made it
difficult for anyone to fix problems with a
software program once 1t »as fielded or to
port a software program from one com-
puter to another.

CARLY SHORTFALLS

Ada was to have solved these and other
problems. and it may yet. However, the
use of Ada in programs in the early
1980s, when compilers were either nonex-
istent or of poor quality, caused some pro-
gram managers in the Pentagon to write
Ada off as a failure. A compiler is a key
software development tool that allows a

!

. with quanutative measurements of the su- !
penonty or productivity or the virtues of

f

programmer to wnte in a high-level lan-
guage such as Ada and have 1t automan-
cally translated (o machine-lesel
instructions.

*Ada’s only handicap ts that it cia:med
10 be a savior for all applications,” David
E. Quigley. the Vax Ada product manag-
er for Digital Equipment Corp.. sad. Dg-
ital is one supplier of computer hardware
that dedicated some of its top program-
ming talent to developing Ada compilers
from the beginning. Soon the company
will introduce its third compiler. It also
offers customers a vanety of Ada tools.
Quigley said this may well be the year the
Ada market takes off. ‘

Now that there are many high-quatity '
comnpilers available that are validated by ;
the Defense Dept.'s stringent tests, things
are changing. The Ada show here offered
some signs of these improsements. Atten-
dance here was triple that of the show .
three years ago in Minneapolis. Also. the
attendees included representatives of many
new companies and higher ranking offi-
cials of program offices in the Pentagon.

The convention was sponsored n part .
by Software Valley Corp.. a nonprofit or-

-

Lockheed Using Ada |
In Airborne Display

BosTON ‘

Wmummumm.ummmhuu

. (AWACS) applications using the Ada

ockheed is developing an advanced |
display for antisubmarine warfare and !
airborne warning and control system |

programming language for development.
The display, which can present air- |
borne. surface and subsurface targets on a |
global scale using the CIA's World Data |
Base 11 mapping system, can also zoom in
so the operator can view an area a few
miles across. The display ts running on a
Dhgital Vax 11875 and will be ported over
.0 a Motorola 68030 microprovessor.
Lockheed’s Advanced Avionics System ,
Center in the company’s Aeronautical
Systems Co. is using the display develop-
ment as part of its own company-funded
effort 10 improve sensors, enhance crew
coordination on multiplace aircraft, and
refine the interface between man and ma-
chine. The Ads progrum consists of about
1.000-1,500 lines of code. The project has
been under development for 15 months
and the display will be tested on buard an
arrcraft late next year The team will use
its expenence fo provide lessens learned |
on Ada to the Lovkheed nrg.mu.umn 3 !

]

'.
%

o0 AVATION WEERr & SPACE TECHMOL Y March '8 1idd

COMPUTERS IN AEROSPACE

-
ganization founded by U S Senate
jonty Leader Robert C. Byrd (D-W V)
to promote high technology ndustry 1n
West Virgima Software Valley has held
other conferences to promote Ada and to
attract related companies to the state

Furthermore. the use of Ada i spread-
ing into the commercial marketplace,
particularly 1n Europe. where telecom-
munications firms are using 1t. The Euro-
pean defense ministries and NATO are
also advocating the use of Ada. but are
not moving as quickly in this area as the
! Pentagon

KEY TO ACCEPTANCE

Industry officials say the key to the wide-
spread acceptance of Ada will be its use
in many of the U.S. Defense Dept 's
new, high-profile weapon system pro-
grams, includ.ng the advanced tactical
fighter and the advanced tactical aircraft,
and other government programs.

The Pentagon mandated on Mar. 31,
1987. that. effective immediately, all soft-
. ware development for new weapon sys-
tems be performed in Ada as the single.
common. high-order programmung lan-

liam Taft, 4th. broadened that directive
in Apnl. 1987 by specifying that Ada
must be used on all Defense Dept. com-
puter resources. with a few other lan-
guages permutted in certain cases. These
reaffirmations of the Defense Dept.'s
commitment to Ada are expected to curb
the number of waivers requested and the
number granted to develop programs in
a language other than Ada.

Currently there are 84 Air Force, 51
Army and 24 Navy programs using Ada
for software development (see chart for
examples). NASA also is using Ada for
the space station and the Federal Avia-
tion Admunistration is using it for the
Advanced Automation System.

COMMERQIAL USES

Ada has spread from use in the military
10 important commercial avionics pro-
grams. The Collins division of Rockwell
International, for example, developed
Ada programming capability to address
military markets, then used it to write
software in Ada for the Boeing 747-400
and Beech Starship avionics suites.
Boeing also specified Ada for the 737
project, which is now on hold.

The emerging Ada support industry,
which has spawned many start-up com-
" panies, seems about t0 enjoy an upsurge
in business following many lean years,
when the use of Ada by the Defense
Dept. was more the exception than the
rule. Industry officials estimate that the
rapidly growing Defense Dept. market
for Ada software passed the $1.8-billion
mark last year.

One difficulty in determining the full
scope of Ada’s use by the Defense Dept.

o ——

guage. Deputv Defense Secretary Wil- ¢

Ma- l ts that 1t s being used on many classified

I programs that cannot be identified. ac-
cording to industry officials Alsa, the
Defense Dept keeps no statistics on how
much 1t 1k spending on software develop-
ment in Ada. or any other language. by

of the 1o0tal defense budge

The real test for the language 1s ex-
pected to be how 1t performs in weapon
. ssstem programs that are emploving 1
i for full-scale development. How the lan-

i

' program or evcn as an overall percentage

guage performs in key programs hike the
ATF and the ATA will go 8 long way 1n ¢
determining its ultimate success, accord:
ng to industry official

One worry expressed by many ai the
Ads conference here 1s that any budge!
cuts that tnm or ehminate new weapon
system programs in which Ada 1s being °
used will slow the acceptance of the lan. -
guage by the defense community and re-
duce the demand for Ada software .
support products C :

|
ii

ffMaior Software Applications Coded in Ada “

if

b Lines of
| progrom Status Code Tye of Seftwars Company
' AIR FORCE T
" Advanced Tactical Fighter Planned 7,000000 Embedded |
I Milstar Development 500000 Command & Control Lockheed h
" Common Ads Missile Packages Development 30.000 Embedded McDonnell
- Small ICBM Development 2,000 Embedded Rockwell }}
it i
, ARMY i

Intermediate Forward i!

I Tost Equipment Development 500.000 Support Grummar ‘;

|, Mobile Automated Fieid i

.. instrumentation System Deveiopment 70.000 Simulation i

| Maneuver Control System Compiete 34000 Commana & Control Ford Aero ||

;| Regency Net Development 110,000 Suppont i

;, Advanced Field Artilery i

¢ Tactical Data System Deveiopment 790,000 Command & Control Magnavox
Army Worldwide |
information System Development 8,000,000 Command & Control TRW !

Il

| NAVY i

] F-4J Weapon i

| System Trainer Complete 150,000 Embedded SAl
Advanced Tactical Alrcraft Planned NA Embedded

! SDI

|

| Battle Management
and C? Portions Planned 10.000.000 Command & Controt
NASA
Space Station Software
Support Enviconment Planned 750,000 Embedded Lockheed
FAA
Advanced Automation System Planned NA Support 1BM or GMH
COMMERCIAL ‘
Avionics for Beech Starship Complete 82.000 Embedded Rockwell*

, Senso Station _

' Simulation Faclity Development 25000 Simuiabion Alied Sgnal |
1J7 Alrcraft Avionics Development NA Embedded Boeing :
OTHER
Canadian Air Traffic Control Deveiopment 1,000,000 Support
F-20 Avionics Complete NA Embedded Northrop
The fetwrs of Ads will mest Ukoly be detormined by Ns performance en high-preflie wespen

! systom programs Wke the advanced tactical fighter. This chart enly Hsts the lsrgest pregrams

!uluua.nmnmmah.nhhmm

ll’wmamummav NA Not Avevadie Source Selomon Brothers Inc

AVIATION WEEK & SPACE TECHND.OGY Mari™ <€

‘38 €

|
{

COMPUTERS IN AEROSPACE

'General Dynamics Explore
In Extensive Flight Test Program

Bostos

s Ada

da. the high-level computer program-
ming lznguage. has some hmutations
running real-ime embedded computer
systems, as General Dynamics engineers
have learned 1n developing a program in

testbed aircraft.
The U.S. Air Force Technology Inte-

high-risk future technologies that the Aur
Force wants to avaluate. One operational
fight program begun in 1986 involves
21,000 hnes of source code, of which 88
1s wntien in Ada. the language developed
by the Defense Dept. starting in the mid-
1970s The rest of the program 1s written
In assembly language specific 1o the Zilog
Z8002 microprocessor. The 28002 was
used t0 run a communication. navigation
and (denufication fnend or foe (IFF) sys-
i tem.

HIGH EXPECTATIONS
Though hmited 'n scope. this use of Ada
1s one of the first in an embedded system

staking the future of many key weapon
system programs on the use of Ada,
which has yet to prove itself widely in
actual use in embedded computer proces-
sors, such as the 12-15 used on board the
F-16. One other flight test program on an
F-15 in 1984 also involved a limited use
of Ada in an embedded processor.

The F-16 system using Ada is called
the Data Entry/Cockpit Interface Set
(DE/CIS). It was originally programmed
in the Jovial language. The system con-

Ada for a senes of flights on an F-16 |

grator program uses an F-16 to flight test

that has actually flown. This is true de-
spite the fact that the Defense Dept. is |

BEW. ,

" Air Force Technology latnof system programmod in Ada for flight tast on this testhed F-18
includes & keypad and dispiay (left console) and an electrenics snit (net shewn).

© sists of an integrated control panel for
entering frequencies for communications
and navigation radios as well as IFF, a
display to show the pilot the entries
made. The system also has some control
stick mounted switches.

Unlike a similar navigation and com-
munications system, which combines con-
trol of all radios and IFF in one control
unit on production F-16s, the one pro-
grammed 1n Ada alsc incorporates a voice
recognition feature. This allows pilots to

use voice commands as well as the numer- |
ic keyboard found on current F-16s to |
enter frequencies and to change the air- |
craft's course. The voice command func-
tion is able to recognize and act upon
numbers and up to 40 distinct words.

J. P. Sarkar, avionics software leader
for General Dynamics on its National
Aero-Space Plane (NASP) study, previ-
ously led the company's Ada efforts on
the navigation and communications sys-
tem for the F-16. He said the Ada-devel-

e e e - ¢~ -

Alr Ferce Tochnology integrater F-18 returned te NASA's Ames-Oryden wore completed by General Dynamics. The sircraft Is te begin a close alr
! Fight Ressarch Facility at Edwards AFB last menth after modifications suppert ressarch pregram this spring (awast Nov. 2, 1987, p. 70).

AVILTION WEEK 8 SBACE TECHND. DG Mersm 28 °3E2

COMPUTERS IN AEROSPACE

b ——

oped package performed well in more

than 20 fight tests Even though extra
crosschecks built into the Ada language
prevent errors from cropping up when a
program is run, these and ather features
require more computer code to be wnt-
ten, which slows down the speed of execu-
tion. However, Sarkar says Very High-
Speed Integrated Circuits (VHSICs) may
reduce the time penalties involved

Also, Ada compilers, which are essen-
tial tools for progremming with the high-
level language. need to be refined further.
Most compilers do not yet incorporate a
number of optional features in mulitary
standards established for Ada, which are
essential for developing programs to han-
dle real-time requirements, according to
General Dynamics engineers.

Programs written to run on embedded
computer systems face two constraints.
First, the programs cannot be t00 exten-
sive because they must run on compact
processors that fit in the limited space on
board aircraft. Secondly, the programs
must be able to execute tasks at high
speed 10 meet the requirements of a real-
time environment. On the F-16, for exam-

flight must be able to perform rapid cal-

360 deg./sec. Computers following this
motion only update calculations at 50
times/sec., but this is quick enough to
present the motion to the pilot as if it
were smooth and continuous.

Sarkar and other General Dynamics
engineers associated with the Ada test
program said many aerospace engineers
are concluding that Ada is not suited to
“hard™ real-time applications for aircraft
command and control software. Hard real
time is where such software subroutines
as analog to digital conversions must oc-
cur in less than 10 microseconds, al-
though Ada is suited 1o “soft™ real-time
applications where the less stringent re.
quirement for subroutines is more like a
few milliseconds. The General Dynamic's
experience with the Ada test program on
the F-16 reinforces this view. However,
efforts are under way to modify the Ada
language to make it more suitable for
“hard™ real-time applications, and Sarkar
expects these efforts to be successful.

Sarkar said the true benefit of Ada will
he seen in the maintenance phase. The
requirements of design updates on embed-
ded computer systems like those found in
the F-16, which has 12-15 per aircraft,
requires constant changes to be made to
the programming. These changes will be
much easier to make if the onginal pro-
gram is developed using Ads rather than
some other language.

The original F-16 flight testing of the
DE/CIS system ended Iste last year, but
flight testing is resuming in a follow-on
Air Force contract awarded for the AFT1
program. O

ple. computers dealing with the physics of |

FILTER CENTER

.

culations. The aircraft can roll at a rate of

VALUT OF THE VOLT IN THE U. S. will change by about nine parts per million on Jar
1. 1990, substantially affecting calibration of sensitive aerospace electronic test
equipment. The change. to align the U. S. volt with the world standard. will affect as
many as 100,000 precision instruments, such as digital multimeters in sutomatc test
equipment, used for electronic production, test and maintenance. Milhitary, and
parucularly black programs. are apt to be most affected National Bureau of Standards
is concerned about the problems and economic impact if industry has not planned
adequately for extra workload of the phase-in, and will publish a pamphlet with
suggestions in the fall. Contact: Norman Belecki, (301) 975-4223.

AIR FORCE AERONAUTICAL SYSTEMS DIV. is sponsoring development of hardened
solar space power systems. The systems are 10 be hardened against natural and man-
made threats, have a 10-year life, 209 conversion efficiency during periods of
sunlight, and a minimum weight of 10 watts per kilogram.

ARMY HAS SELECTED THE THOMSON-CSF/HAMILTON STANDARD team to supply 56
head-up displays to the Army for the Bell OH-58 C helicopters. The HUDs are the
first award in the Army’s Sunger program to provide the helicopters with an air-10-air
missile, gun and rocket capability, according to Thomson-CSF. First production
deliveries are scheduled for 1989.

1. C. SIMS HAS DEVELOPED A RECONFIGURABLE COCKPIT system for development
and training with two or three dimensional displays that simulate television, Flir,
moving maps and out-the-window perspective views. The real-time computer-based
systern can be configured to the cockpit of a specific aircraft quickly and flown
through a simulated tactical environment that inciudes targets and enemy threats. The
low-cost, flexible system will peform air-to-air, air-to-ground and tactical support
missions.

AIR FORCE WANTS TO DEVELOP A MIGH-POWER MICROWAVE (HPM) SOURCE
generated by broadband video pulses switched by bulk avalanched solid state laser
triggered switches. Current HPM generators include magnetrons, vircators. klystrons.
gyrotrons and free-electron lasers. The first phase of the planned 26-month effort will
develop a single element power module. The second phase will develop 2 § x §
antenna array of power modules. High-power microwaves have potential as future
tactical weapons against both electronics and personnel.

ROYAL NORWEGIAN AIR PORCE will install Collins Global Positioning System
(GPS) receivers on its fleet of Faicon 20 aircraft, which will be used for airfield
certification and as VIP transports. The Rockwell division is also building military
GPS receivers for the U. S. Defense Dept. with a potential value of $454 mllion.

U. $. AIR FORCE has exercised an option to purchase 122 additional terrain-following
radar systems from Texas Instruments for F-111 aircraft. Deliveries under the
contract, the second of seven anticipated lots, will be made by the end of December.
The contract, worth $88.5 million, is part of a total program for 450 radars plus spares
that will run through 1991. Texas Instruments completed first-lot deliveries of 68
radars at the end of 1987.

ARMA DEI CARABINIERL, the ltalian Army's Judiciary Police Branch, has awarded
Datapoint Corp. a $2.7-million contract for local area network-based computer
systems. The contract calls for S8 Datapoint processors and 1C terminals to be used to
configure Attached Resource Computer (ARCNET) local area networks at Carabinie-
ri installations throughout Italy. Each network site will use Datapoint’s Resource
Management System (RMS) network-oriented operating environment.

AIR FORCE HAS AWARDED SINGER a $77-million Joint Tactical Information
Distribution System contract. Singer will provide class two terminals for the Air Force
E-8A Joint Sunveillance Target Attack Radar System aircraft and for the Navy's F-14
and E-2C aircraft. JTIDS is designed to use spread spectrum and fast frequency
hopping techniques to transmit digitized, jam resistant, secure voice and data and to
provide precise relative navigation to the U. S. military and NATO.

AVIATION WEEK & SPAZE TECHNOLOGY Marz- 22 *98¢

7t

Do-While Jones

Ada Info

Why the Navy Doesn’t Use Ada

Insiders have known tor some time that the
Navy has fallen behind the other services
when 1t comes to Ada. The Navy position
was obvious even to outsiders at the Sixth
National Conference on Ada Technology,
March 14-17. There the Air Force and
Army proudly talked of their major Ads
projects, especially CAMP (Common Ada
Missile Packages) and RAPID (Reusable
Ada Packages for Information systems De-
velopment). The Navy spent most of the
conference avoiding questions. How did the
Navy get so far behind?

The three services all recognized the
need to develop Ada compilers and support
environments years ago. The Army awarded
a contract for the development of the Ada
Language System (ALS), and the Air Force
funded an Ada environment called AlE.
The Navy saw this as a duplication of effort,
and wisely decided not to develop a third
environment. They chose instead to monitor
the development of the ALS and AIE, with
the intention of adapting the better of the
two for Navy use.

The Air Force quickly decided to can-
cel the AIE development contract. They told
vendors they would use any validated Ada
compiler targeted to the Air Force standard
1750A computer architecture. Todsy there
are validated Ada compilers for 1750A tar-
get computers, and the Air Force Ada effort
is going strong.

Since AIE dropped out of the race
early, the ALS won by default. The Navy
announced its intention to adapt the Army’s
ALS for Navy use by replacing the Army
compiler with a compiler targeted to the
Navy standard computers. The Navy ver-
sion of ALS was to be called ALS/N.

The ALS went into Beta test. It was
20 big it would fit on a VAX 780 only if the
VAX was dedicated to a single user. It had
compilation speeds reminiscent of the old
NYU Ada-Ed transiator of years ago. It
generated code that didn't have a ghost of &
chance of running in real-time embedded
computer applications. If that wasn't bad
enough, Motorola and Intel were selling
much better microprocessors than the

Army standard microprocessors. The Army
was stuck with a terrible Ada environment
for a family of state-of-the-past computers.

The Army came up with a brilliant
solution. With great fanfare they announced
the successful completion of the ALS pro-
ject. They generously placed the technology
(which had cost so much money to develop!
in the public domain 80 everyone could ben-
efit from it. At the same time they casually
mentioned they would be using commercial
Ada environments for rugged versions of
commercial microprocessors, instead of the
ALS. The Army Ada efforts are doing quite
well now.

The Air Force and Army generals
know there are times when you have to
lose a battle to win the war. The failures of
AIE and ALS were stepping stones to vic-
tory. The Navy has a different tradition.
“The captain goes down with the ship.”

Although studies done in Navy labs
show that the ALS/N is inadequate for
Navy applications, the Navy insists on a
policy of requiring the ALS/N for all Navy
Ada applications. In other words, the Navy
has given the message to compiler vendors,
"Don't bother designing Ada compilers for
Navy standard computers, because we
won't buy them.” That's why there are no
compilers for Navy computars today.

After boidiy stating that the Navy
would use ALS/N fo: Ada development in
1990, Admiral Quast hastily left the Con-
ference before anyone could ask him any
embarrassing questions. [suspect he knew
someone would ask, "Hasn't ALS/N been
cut from the budget?” (It has since received
$4 million that was taken from other
projects.) Three times I heard pecple ask,
“How can a software contractor bid on a
Navy project when the Navy insists on re-
quiring the contractor to use ALS/N?” They
never got an authoritative answer because
the Navy brass wasn't thare to answer the
quaestion.

I tried to give Commander Barber a
chance to redeem the Navy's tarnished
image. I publicly asked this carefully
worded question: "If any vendor validates

Journal of Pascal, Ada, & Modula-2, Vol. 7, No. 5, pp. 4041 (1988)

© 1988 by John Wiley & Sons, Inc.

an Ada compiler targeted to a Navy stan.
dard computer, and that compuler is clearly
superior to the ALS N. will the Navy allow
it to be used?” [hoped he would say. "Of
course. The Navy always uses the best
technology available.” His answer was,
“Maybe we will think about it.” | suppose
that's better than a flat "No.”

So how are software contractors
going to bid on Navy contracts? Well. if |
was going to bid on a Navy project. | would
bid it with the intention of using my favor-
ite Ada compiler on my favorite host com-
puter. In the years it takes to complete the
project, the ALS/N might become a useful
product, or the Navy might adopt a reason-
able policy concerning the use of a third
party Ada compiler targeted to the Navy
computer. If this happens, [would recom-
pile the Ada source code (which I developed
on my favorite compiler) using the Navy
cross compiler. Of course I would be careful
to isolate the machine dependent code to a
few 10 packages (but one should do that
anyway). The bodies of these packages
would have to be rewritten before recompii-
ing. but the rest of the source code would
remain unchanged. Not much would be lost
switching from my favorite environment to
the Navy system.

We have to take into account the fact
that the ALS/N may never be of any use.
ar.d independent vendors might not risk de-
veloping a compiler for a market that
might not exist. Then the fall back plan is
to translate the Ada design to CMS-2 for
the Navy computer, or get a waiver to use
another computer of my choice, which has a
good Ada compiler. That wouldn't satisfy
the original contract, but all contractors
know to get into a position where they can
propose a contract modification that the
government can't refuse.

What should compiler vendors do”
That depends on how they feel about tak-
ing chances. If one vendor goes out on a
limb and develops & compiler for the Navy
standard computers, and the Navy decides
the logistics of maintaining spare parts for
s limited number of computers outweighs a

CCC 0735-1232/88/050040-02804.00

romantic¢ devotion to ALS/N, that vendor
could corner the Navy market. On the
other hand. there may never be a Navy
standard computer market, and all the de-
velopment cost will be lost.

Before you all start to write me let-
ters telling me that you know of & Navy
Ada project or two, let me assure you that |
know about some, too. I'm not saying there
aren’t any Navy Adas programs. I'm just
saying there are noticeably fewer Navy
programs than the other services. Perhaps
the key word here is "noticeably.” The
Navy programs | know of are grass roo.s
programs undertaken by Navy laboratory
engineers with little or no backing from
Washington. Perhaps these programs are
intentionally taking & low profile to avoid
the niak of their sponsor telling them not to
take such a risky approach and stick with
an established language.

The official Navy position is that the
Navy supports Ada, but actions speak
louder than words. If the Navy really sup-
ports Ada, why was the Navy Ada imple-
mentation plan o late. (] use the past tense
because I hope it will be done by the time
this is published. Perhaps it still isn’t done.)

It seems to me that sooner or later
the Navy has to get with the program and
follow in the path of the Air Force or the
Army. They either have to open the market
to third party vendors (like the Air Force
did), or switch to a computer that slready
has good Ada support (like the Army did).
Until they do, they will remain up a creek
without a paddle.

MODULA-2

Somaching abous using an advanced lan mpnu ’
work. The world’: programmers . vt l"‘
PMI publishes the bast of their tﬂom.
»

-

Rapertoire®: By Chatles Bradford and Cole Brecheen Afrer
five major new releases since its introduction in 1989,
Rapertoire 13 n~w the most mature, reliable, and widely used
Moduls-2 oulkit in the world. Provides compiler
indepen.c e at both source- and object<ode le- 2ls; source
works without change under any M2 compiler; object code
* u1as conveniently with any Microsoft-compatible language
{peotoryped headers for C included) Includes unusually
powerful screen design/display system; sophisticated list-
oriented DBMS, text editor; natural language snaiyzer.
transparent EMS compatibility; and exctensive string
manipulation support. lacludes full source (over 12 s

Mn)lﬂdmmemﬂml e s o e 0 s 0000 Bg

Graphix: By Leonard Yates. The Moduls-2 interface to the
remarkable MessWindow graphics library. Suppores
muluple fonts, mouse tracking, many printers (incl. Post-
Script & Laseret), over 30 display adapters, and hundreds of
modes. Includes MouWnndow package.

ag Objeﬂ oﬂ‘, e o 0 |49

Repertoire® / Birieve® Toolkis: By Gre.ory Higgins.
Novell/SoftCraft's Berieve file manager is the standard for
large business spplications. R/BT is a massive support
system for building Btrieve applications with Repersoire’s
screen system. Includes a complete customizable customer-
tracking application. ldesl for consultants. Includes Y

full soutce for both Repertoire and R/BT. . .« . . . 149

MacroZ™: By Kurt Welgehausen. Beings the full power of C's
macro preprocessor to Modula-2; provides DEFINE,
UNDEFINE, IFDEF, IFNDEF, INCLUDE, etc, for
parameterized macro funcrions, conditional 3

compilation, etc. Includes full source: « o ¢ ¢ o ¢ o 89

NutMod™: By Donald Dumitru. Makes it easy 1o take
advantage of Novell's NesWare operating syscem for local-
ares nerworks. Provides simple, efficient access to every
important function of Advenced NetWare 20. Includes
thorough documentation and full s

SOULCE COQC. ¢ e s 6 s s s o oo s eecensesosss 69

DynaMatrix™: By James Bones. A complete object-orented
library for mampulmn’ ae. sparse matrices.

Wich source:s « o » Object snly:e o o & ‘49
EmsStorage™: By Charles Bradford and Cole Brecheen.
Primitive EMS systems can’t allocate chunks smaller than
16K; EmsStorsge is 20 sdvanced, handle-oriented, high-level
system that manages objects as small as 1 byte. Detects and
uses LIM Expanded Memory if present, or DOS mem-
ory if not. Provides automa‘ic s
gltbl'ccolhﬂion.................... 49
ModBase: By Donald Fletcher. A B-Tree DBMS that uses a

dat file formac compstible with dBase IiI. Includes s
full SOUECE.c ¢ e s s oo 06 s oo s o s s consos o 39

With source:e « o

* Potpowrvi: An extensive cstalog of small, inexpensive

modules. Please call for your copy.

* Coming Soom: Serial Communicstions Library.

s

Ovenusshnppm;....................."5

mpabn. JP1 TopSpeed, Logitech, StonyBrook,
FTL, 2 dl.

All'rdwn available cxluvdy fn- PMI:
inguiries walcome
VISA/MC
' J J AMEX/COD/PO
JJ (503) 7778844
4536 SE 50th BIX: pmi

Portland, OR 97206 Telex: 6502691013

shipped 737,500 terminals.
That number rose 11% in
1986 10 833.000. but despite
the jump in terminal sales,
dollar volume for the year
dropped to $1.42 billion from
$1.48 bullion in 1985.

According to analysts,
IBM has remained a formi-
dable compeutor in the termi-
nal market, aithough in 1985 it
slipped one percentage point
in market share to the plug-
compatible competition,
mainly Telex. In 1985, iBM
bad 57.6% of the 3270 mar-
ket, followed by Telex with
16.1%,1TT Couner with 7.1%,
AT&T-Teletype with 4.7%,
Memorex with 3.4%. Lee
Data with 3.2%, Harris with
2.7%, and the remaining com-
parues with 5.3%.

Compotiters Sivkke Bock

But even in this new era
where more terminal ship-
ments mear. less dollars,
some plug-compatible ven-
dors are holding their own.

Instead of going offshore
for margins, Telex Corp.,
headquartered in Tulsa,
Olda., has made a large in-
vestment in a fully automated
terminal manufacturing facili-
ty in Raleigh, N.C., and an
automated distribution and
repair center in Tulsa.

Last week, Telexaintro-
duced 1its entry into the 3191
market, the Telex 191, which
will initially be .vailable oaly
in the U.S. Like the 3191, itis
built in a completely automat-
ed facility to keep costs down.
The 191 attaches to either a
Telex or an IBM control unit. It
offers an 88-key keyboard or
arecently announced 122-key
keyboard. An added optional
feature is the ability to attach
a light pen or a message print-
er. The 191 lists for the same
price as its IBM counterpart,
with 2 90-day warranty.

According to Mike Bow-
man, product manager for
Telex's 3270 terminals. the
company will be competitive
with |18M on volume discounts
and warranty periods, which

—

News

run as lnri§ as three years.

Other vendors o enter
the 3191 market include Bee-
hive International (with an en-
hanced 3278 offering) and
Memorex, both in San Jose.
ITT Courier, also in San Jose,
isreadyingits 3191 entry for a
March announcement.

"It is an overriding situa-
tion. Plug-compatible ven-
dors must have a 3191com-
patible product because that
is now the eatry point for
3270 terminals.”” Wagner
says.

As terminal prices drop,
plug-compatible vendors
have to look to other seg-
ments of the market to make
up for slipping 3270 margins.

“Telex has expanded
into new markets that com-
plement and expand our 3270
{offerings],” says Pat Reiner,
vice president of marketing
and product planning for Tel-
ex. “For example,” she says,
“in July of last year, we an-
nounced a new series of aif-
line [reservation) terminals.
In September we introduced
the C078 voice/data terminal,
and in November we entered
the System 3X market with
rune new products.”

“"THE TERMI-
NAL GIVES
IBM ROOM

Tocut
PRICES. "

Analysts also say that
specialized products like the
voice/data terminal and air-
line reservation terminals can
stull command higher prices
and margins for Telex. Com-
panies such as Lee Data, Min-.
neapolis, and Memorex are
the only terminal vendars
now offering a more diversi-
fied product line.

in Perspective

Another area in which
Telex is doing well is control
units. At the ume of the 3191
announcement, (BM also said
it would add multiple sessions
and windowing capabulities to
its control umt, but Big Blue
has yet to offer a control unit
with these features. How-
ever, analysts say IBM is
readying products with these
features for release some-
tume in the first half of this
year.

Taking Adv-wtege

In the meantime, compa-
nses such as Telex are talang
advaatage of the ume by
bringing out products that
match IBM's direction.

Telex recently intro-
ducedits 274 control unit with
window. g. which allows
3270 terminals to coafigure
up to four displayable win-
dows of four different host
sessions. Data can be copied
from one window to another,
even if one of the windows is
an ASCH host session. The
control unit also supports the
IBM 3179G graphics support
feature, which enables an at-
tached 3179G to use the all-
points-addressable (APA)
graphics support available
from the host computer.

&According to Telex's
Bowman, when his company
incorporates announced fea-
tures from IBM, as in the case
of the control unit, the vendor
must adhere to strict compati-
bility.

“These vendors don’t
want to jepordize their plug
compatibility. They don't
want to extend themselves
too far away from IBM,” says
10C’s Goldman.,

In the short term, IBM is
taking a ver~ aggressive pos-
ture in the 4270 business as it
attacks its competition's
strongest selling point—
price. But, until 1BM can deliv-
er all it has promised in the
area of control units, there is
plenty of room in the market
for
vendors.

the plug-compatible
a

(LANGUAGES | |
What the
Countess
Didn’t

Count On

Ada continues its
slow march to
the dp world, but
can it shake off
the DOD image?

BY EDITH D. MYERS

Ada, the Department of De-
fense-mandated program-
ming language named for Ada
Augusta Byron, Countess of
Lovelace, s hardly topping
the wish lists of corporate MIS
managers.

There are those who
think it should and those who
think it someday will (see
**Ada Fans Say Now’'s the
Time,” May 15. 1984, p. 38).
and there are some things
happening that could propel
the language into a prormunent
position in the world of com-
mercial data processing.
Foremost in most minds was
IBM's seeming endorsement
of the language when it leaked
news at a SHARE meeting in
August that it would be offer-
ing Ada’ compilers and pro-
ductivity tools for 370 sys-
tems running under MVS and
vM/CcMS. This disclosure
eventually materialized as an
agreement between I1BM and
Telesoft, San Diego.

" Despite the IBM impri-
matur, Ada apparently sull
has neither extended its iden-
tity nor ventured beyond the
military/industrial world.
One of those reasons, of
course, is the entrenchment
of languages such as COBUL in
data processing departments.
Another is the relatuvely re-

33 OATAMATION . FESRUARY | 1987

News in Perspective |

hke

41100
9 a0
2408
49000

2100
42 9%

46 900
0-5610

45400
& n
21104

10104
78348

&
2158
2 188
1§44

g
w1551

171
iy

cent incursion of so-called
fourth generation languages
from a number of vendors.
Says Michael Ryer, director
of Ada products for Intermet-
rics !nc.. Cambndge. Mass.,
“There is a great inventory of
bullions of lines of COBOL code.
You can't very well rewnte
every single line, andit’s hard
to put a little bit of Ada on top
of alot of COBOL.”

Nevertheless, Ada is
moving along and is finding
applications. One of the most
visible areas where this is be-
COMINg true 1s in the aircraft
industry.

Some of the lure for air-
craft manufacturers to use

““WE'VE GOT
THE BEGIN-
NING OF THE
BUILDING OF
AWAVE.”

Ada, primanly in embedded
applications. 1s from the ef-
forts of a working group of the
Systems Architecture and In-
terfaces subcommittee of the
Airline Electronics Engineer-
ing Committee (AEEC) of
Aninc Inc.. Washington, D.C.,
a nonprofit organization
owned by a number of major
airlines and manufacturing
companies that provides re-
ports and specifications for
th 2 avionics industry.

Last month, the working
group held a second meeting
to review what is currenty
Aninc’s proposed paper 613,
which provides guidelines for
usug Ada in avionics design
and which could become the
Arinc report AI3 by midyear,
giving it a lot of weight with
avionics designers. Paul Pri-
saznuk, avionics engineer
with AEEC. says the instiga-
tion for. as well as much guid-

ance 1n, the work came from
Boeing Co.. which plans to
use Adain the development of
its 7J7 aircraft.

Iveluation ot Boclag

Bnan Pflug. manager of
software engineening for awi-
onics des:gn. Boeing Com-
mercial Airplane Co., says
Boeing definitely pians to use
Ada in the 7)7 project if “the
state of the technology
proves such that there will be
a cost benefit. We've told all
our suppliers [for the 7]7
project] that that is our direc-
uon and we re in the mudd!e of
a project nght now to deter-
mune if that is correct.”

He savs the project in-
volves benchmarking cur-
rently avalable Ada compi-
ers to determine the efficien-
cy of code produced. An
earlier. sirmular evaluation for
the prototype stages of the
7)7 project was inconclusive
to the point that Boeing then
left 1t up to its suppliers
whether or not to use Ada.

“The quality of the code
produced by the compilers
was not always as efficient as
it could be in terms of space or
time,”" savs Pflug. ‘It has
nothing to do with the lan-
guage but rather with the ma-
wurity of compilers. Most are
fairly new.” He says the cur-
rent project has a targeted
production decision date of
August of this vear.

Pflug says about 100
companies are candidates to
be suppliers of avionics equip-
ment for the 7)7 project. with
150 20 of them probably des-
tined to be major suppliers.
The aircraft is scheduled for
first customer delivery in
1992.

On another commercial
front, a big push for Ada prob-
ably will come from creation
of a Commercial Ada Users’
Working Group (CALWG) un-
der the banner of SIGADA
(Special Interest Group on
ADA) of the Association for
Computing Machinery (ACM).
Corporate members include

GTE. Stamford, Conn.; Lear
Siegler Inc., Los Angeles;
Boeing Co.. Seattle; Ad-
vanced Computer Tech-
niques. New York; and CRI
Inc., Santa Clara.

The working group first
met tn November in conjunc-
uon with a SiGADA Ada Expo
conference in Charleston, W.
Va., and now has scheduled a
third meeting for March 17 in
Washington, D.C.

Dave Dikel, director of
Washington, D.C., operations
for Addamax Corp., a Cham-
pagne, lll.-based contract
software service fum focus-
ing on the Ada market, and
chairman of CAUWG, says he
was asked to find a commer-
cial Ada users group by the
Ada Joint Program Office
when an investigation he was
conducting into commercial
uses of Ada was terminated.

He said his investigation
had unearthed the facts that
there was "substantial” com-
mercial work being done in
Ada, that users tended to be
secretive about what they
were doing, that there was no
single good source of infor-
mation on Ada, and that there
were a lot of “ghost facts”
around, a prevalence of bad
information.

A Soverament lmage

“1 looked for a group but
didn’t find one,” Dikel says. ‘]

|

|

approached the users com-
mittee of SIGADA and found
there was no group focusing
on commercial uses and was
asked if | wanted to start
one.” This he did with some
financial backing from aJPO.
Formation was started in
March 1986. “Our aimis to in-
fluence development of effi-
cient standards and prod-
ucts,” he says, “and to fight
the prevalent umage that Ada
is a government thing. s a
DOD thing.”

But, he says. “the DOD
has a key role in our group.
There are a number of key ex-
ecutives in DOD who are de-
tertnined to get the best tech-
nology for their dollars. They
are buyers of commercial
products for prices with lots
of zeros. We welcome their
support.”

“We've got the begin-
ning of the building of a
wave,” predicts Paul Fuller,
vice president of markeung
and sales at CRI. “We'll be get-
ting fallout. Companies like
Lockheed, Martin Marietta.
and McDonnell Douglas wall
have to train thousands ot
people in Ada (for work on de-
fense contracts] so why
would they want to wnite thewr
own in-house systems in C?"

Edward V. Berard.
founder and president of EVB
Software Engineering Inc..
Frederick, Md., notes that
“the U.S. is the only place on
the globe in which Ada 1s
thought of as being primanily
military. In Europe, 85% of all
Ada applications are commer-
cial. Japan is a huge commer-
cial consumer of Ada.”

Grady Booch. director of
software engineering for Ra-
tional, Mountain View, Calif.,
which provides software de-
velopment technologies
based on Ada. says language
is the least important aspect
of the Ada movement. but
“people relate to a language.”
The big thing. he believes, 15
software engineenng, a disci-
pline he thinks is scarce in the |
U.S., which accounts. in part. |

DATAMATION — FEBRUARY @ 387 38

for the more rapid spread of
Ada elsewhere. “The Euro-
peans, as a whole, take soft-
ware a lot more seriously than
we do. They don't have the
money to waste that we
have.”

Booch says two past bar-
riers—the lack of people well-
trained in Ada and the lack of
good compilers—have been
lowered. *We are seeing Ada
taught in the universities now
and there are a lot of good
compilers out there,” he says.

One of the first compa-
nies to come out with Ada
compilers was Telesoft, and
the San Diego company’s
agreement with iBM for both

“IT’SHARD
TOPUTALT-
TLE BIT OF
ADA ONTOP
OF ALOT OF
CoBOL.”

compilers and programming
tools is considered to have
much significance by both the
company and its competitors.
Fuller says IBM's association
with Ada will promote the lan-
guage to the commercial
world.

“If 1M didn't tout it
(Adal, it would have the same
luck as Pascal. Why is C not
more popular? Because of
IBM’s reluctance to support
it,” sats Fuller.

He also believes Digital
Equipment Corp.'s heavy in-
volvement with Ada will help
advance the language in com-
mercial markets. “We have
the two biggest ..mmercial
{computer| companies in it.
Everyone else will want in
t00.”" NEC offers a range of
Ada products, both hardware
and software.

News in Perspective

Telesoft. too. believes
the maturation of the market
led 15M to come knocking.
“We have been working with
I1BM for three or four years,”
says Bruce Sherman, Tele-
soft director of marketing.
“Unul now, it was with the
Federal Systems Division on
specific government pro-
grams. As the Ada market be-
gan maturing over the last
few years, the commercial
side of IBM decided to talk to
us.”

Telesoft also has an
technology exchange agree-
ment with Prime Computer,
Natick. Mass. Prime isn't of-
fering an Ada product now,
nor would product manager
Wolf Metzner say when the
company would. He did say
that he sees a lot of potential
for Ada in large systems,
“which Prime is getting into
with its high-end machines.”
He notes that Prime does half
of its business outside the
U.S., “where Ada interest is
high.”

There are other encour-
aging signs, too. Two rela-
tional database management
systems in Ada have been an-
nounced. One was announced
more than a year ago by CRI of
Santa Clara, and the other, in-
ternally cailed Adaplex, is un-
der development by Comput-
er Corporation of America,
Cambridge, Mass. CCa's
product is due for beta site in-
stallation late this year.

Two other producers of
relational database manage-
ment systems, Relational
Technology Inc., Alameda.
Calif., and Oracle Corp., Bel-
mont, Calif., are offering Ada
hooks to their software, pri-
marily to get their feet into
the government market but
with an eye toward future
commercial users.

Says Taby Younis, man-
ager of technical support, fed-
eral operations for Oracle,
*Ada has a great deal of po-
tential and, when it blossoms,
we |hope to be| leading the
pack.” 8

|

Buys Graphics Rrm

Bolt Beranek & Newman
Inc., Cambndge, Mass., has
acquired Delta Graphics Inc..
a Bellevue, Wash.-based de-
veloper of computer image
generauon systems for sunu-
lation and animation applica-
uons. The acquisition. in the
form of a stock deal, is valued
at $16.5 million. Delta Graph-
ics markets its products pri-
manly to government and mil-
tary agencies. Last summer,
Delta Graphics was awarded a
$30 mullion contract to pro-
vide its Simnet distributed
multiuser training system for
mulitary vehicle operators to
the Defense Advanced Re-
search Projects Agency and
the Army. Bolt will operate
Pelta as BBN Delta Graphics
ne.

Lay Off ot Wang

Weaker than expected sales
at Wang Laboratories have
prompted a new round of belt-
tightening measures, inciud-
ing the elimination of 1,000
jobs and a 6% wage cut for all
salaned workers. An estimat-
ed $35 mullion loss for the fis-
cal second quarter ended Dec.
31, 1986, was also blamed on
overly optimistic sales pro-
jections, the company says.
The size of the loss may be
larger depending on results of
an asset evaluation under way
at press time, a spokesman
says. Wang Labs two years
ago began releasing workers
after sales growth lagged be-
hind expectations. Some
1,600 jobs were eliminated
last July and a similar number
wereletgoa year earlierinre-
sponse to lower sales. The
latest cutbacks will pare annu-
al expenses by approximately
$50 million and trim the em-
ployee roster to about 30,000

people.
Puiling the Plug

18M has nd itself of two un-
profitable businesses in re-
cent weeks. The first was In-
ternational MarketNet, 3 two-
year-old joint venture with

Memill Lynch & Co. designed
to serve the financial services
market. Imnet, New York, be-
gan shipping its standalone
micro-based System 100 in
June, but was never able to
complete 1ts cornerstone
product. the Senes/1-based
System 300. The companes
say the decision was made
upon reassessing the financial
viability of the venture. The
majority of Imnet's 250 em-
ployees have been laid off.
The second consolidation
was that of IBM Instruments
Inc., formed in 1980 to sell
chemical analysis tools to lab-
oratory scientists. The unit
employed 150 people who the
compar.y says will be reas-
signed. 1BM has sold its inter-
est in two small firms that
manufactured some of the in-
struments under 1BM's label.
IBM says it will continue to
service products it soid in the
last five years.

Leuving the Fold

Unisys Corp.. Lockheed
Corp., and Allied-Signal Inc.
have all announced plans to
withdraw from Microelec-
tronics and Computer Tech-
nology Corp. by the end of
this year. The decision by
these three companies to
leave the fold brings the num-
ber of active members down
to 18. According to a spokes-
person for the Ausun, Texas-
based MCC, the withdrawal of
these companies is unrelated
to the resignation of Adm.
Bobby Ray Inman. MCC’s first
and only chief executive. Al
lied's sale of its Amphenol di-
vision ended the Morristown,
N.J.. company’s interest in
the venture. A spokesperson
for Lockheed, headquartered
in Burbank, Calif.. says that
the aerospace company's de-
parture had nothing to do with
Inman's resignation or the
other departures from MLl
Last year, Gould. BM¢. and
Mostek-all left MC(, but the
research consortium picked
up Hewlett-Packard and Wes.
tinghouse. .

|
|
l
)

36 DATAMATION

FEBRUARY | 1987

T LMl G820

—

LA <1 7S]

Ada Information Clesaringhouse
sponsored by the Ada Joint Program Office

The International Language
for Software Engineering

COMMERCIAL APPLICATIONS IN Ada

Reprinted with permission of the authors,
Ann 8. Eustice and Barry Lynch

When the U.S. Department of Defense (DoD) offered 1o
subsiaize the creation of a new language for embed ded
systems in 1979, it was searching for a solution 0 the
srmed services’ software problems. Their embedded
computer systems that controlled airplanes, submarines,
etc., were written in dialects, which required unique
compilers and tools. Because each piece of software had
a vocabulary specific to it, the DoD’s 1aboratories could
noteasily and inexpensively alter software as their needs
changed, or port it to new hardware platforms, or depend
on the result.

The DoD’s solution was to establish a competition
for the creation of a powerful language that would
embody modem software engineering techniques. After
the depanment chose what it considered to be the best
language, it mandated that all new embedded systems be
written in MIL-STD-1815A, or Ada. It was accepted as
an international standard, and other countries’ defense
deparunents, such as those of Germany, France, and
Australia, also began mandating or introducing Ada 0
their software laboratories. As a result, a decade 3go
almost everyone who used Ada did so under a general’s
orders. Today, the language has infiltrated some com-
nercial sectors which have the same software problems
of maintaining and reusing their software, and are look-
i1 g for the same solution in Ada.

This rend of certain commercial sectors accepting
Ad. is weicome news to vendors of Ada compilers and
development tools. Since the international “outbreak of
peace”, brought on by the collapse of Warsaw Pact and
the demise of the Soviet Union, Ada product vendors
have been motivated to explore market niches outside
the Pentagon in anticipation of defense budgets shrink-
ing in the "90s.

‘The commercial sector can expect to receive more
telephone calls not only from Ada product vendors but
also from Ada programmers and trainers who will be job
hunting as defense-reisted industries lay off staff. Wells
Fargo! "kko, in San Francisco, Calif ., for exampie, cites
the availability of highly experienced Ada programmers
a8 one reason it chose the language for its new invest-
ment analysis application.

While a reduced demand for Ada products and

AdaliC, sporated by HT Ressaroh instiiute
P.O. Ben 40003, Washingten, DC 20080-8803
1/800 AdaiC-11, 703/888-1477, FAX 703/808-7019

developers in the defense market may increase the
commercial use of Ada in the future, those in the private
sector who use Ada now are reacting to different eco-
nomic forces. Most developers of commercial
applications interviewed for this article mentioned Ada
software engineering features, such as packaging and
information hiding, as their main reason for choosing the
language. Others chose Ada because it was known to
facilitate reuse and the development of large applica-
tions. Both characteristics increase the sofiware's
reliability, which aviation and space agencies and finan-
cial services companies mentioned as the deciding factor
in using Ada in their new applications.

Adsa IN FiNANCIAL SERVICES

One of the early high-profile Ada successes was with
Reuters financial services in Hauppauge, NY. Reuters
is best known as a British intemational print and photo
wire service that transmits real-time information on
financial markets and news. Lesser known are its
systems for the Chicago Mercantile Exchange.

Reuters’ two sysiems enable trader-to-trader com-
munication and sutomate the matching of orders. The
systems respond within two seconds, handle high loads,
and improve the presentation and usefulness of data to
clients. Most importantly, the software must transmit
and process the data absolusely correctly and on time.
Becsuse the application had to carry a heavy load of data
accurately and quickly, Reuters ran a greater risk of the
software failing due to its complexity. The resultant
mistakes could have been extraordinarily costly. Ac-
cording to Alfred H. Scholldorf, manager of Advanced
Projects, after studying the language and building a
prototype system in 1985, Reuters decided that using
Ada was “required for seccess™.

Each system used eigit Ada developers to write
250,000 lines of code. Reuters invested 25 staff-years w0
build each application’s 10 major subsystems. They
now run on several large VAX machines with multiplex
inputs asviving from PCs in New York, Chicago, Lon-
don, and Tokyo, which are broadcast to other PCs
internationally. The applications process billions of

FOMM O108-1108A
COMMAPPS . MLP

O

CompuBierve 70312.3303 Internet adeinfeddaine.sei.ormu.edy

COMMERCIAL APPLICATIONS IN Ada

Belgium and Switzeriand leading the way. Banksys, an
organization responsible for electronic fund
transfers in Belgium, also develops systems for use in
other countries. The sysiem is based on Tandem central
computers, & private X25 network, terminal concentra-
tors, and Banksys-developed terminals.

Having originally developed the system in C and
assembier, Banksys decided to change 10 Ada because
of its real-time capabilities, ease of maintenance on
larger systems, and high level of portability.

The Union Bank of Switzeriand has written two
systems, COSY and DESY+, almost entirely in Ada.
COSY (Control System) is a real-time monitoring and
coatrol system for VAX/VMS and RISC Ultrix architec-
tures. It enables the bank to manage large computer sites
with a minimum of operations staff and to maximize
system up-time. COSY was first released in mid-1988.
Now in its fourth version, COSY allows almost fully
sutomated systems operations with a graphical user
interface running under Motif.

Like Reuters’ Ada systems, the DESY (Dealing
System) supplies foreign exchange dealers with real-
time data to support their transactions. The first DESY
release was not written in Ada. In 1986, it was modem-
ized with some Ada. The new version, DESY+, will be
released next year, and is written almost entirely in Ada.

Ada N COMMERCIAL AVIONICS

Nowhere is Ada more deeply
entrenched in both the public
and private sectors than in the
international avionics market.

In the public sector,
can be credited with leading
the push for Ada. On May 25,
1985, Boeing established the
policy that it would use Ada
in future avionics systems, related laboratory facilities,
simulations, and associated tools. After the company
of the Aeronsutical Radio, Inc. (ARINC), the committee
selectod Ada as the “language of choice™ in 1988.
(Domestic sirlines founded ARINC in the 1940s in
order to regulate radio navigational frequencies. Since
then, the airlines have wried to maximize standards
thwrough ARINC that could benefit the entire avionics
comemunity.)

Today, Boeing uses about 500,000 lines of Ada to
fly its commercial 747-400 in subsystem components,
critical certification, and human safety features. Two of
the three largesi systems on the 747, or 43 percent of the

executable bytes, are written in Ada. The software is
FAA certified. Boeing's new 777, which is costing
between $4 to $5 billion to develop, will be 90 percent
Ada by lines of code when it makes its maiden flight in
1994. Brian Pflug, manager of the Central Software
Engineering Group in Renton, Wash., says that Ada
portability saves Boeing's suppliers the most money.

Another leader in using Ada for flight is Collins
Commercial Avionics in Cedar Rapids, lowa, of
Rockwell Internagional. Collins began using Adain late
1983 for government work. It decided to write commer-
cial applications also in Ada in order to swap personnel,
compilers, tools, and training easily between projects.
For example, Collins invented and developed a Global
Positioning System (GPS) satellite communications
board in Ada for the US DaoD in the mid-1980s. Later,
the division installed the board in commercial airplanes,
trains, and even a van that it uses 10 demonstrate state-of -
the-ant technology to international automobile makers.
Rockwell's Ada work has since spread to its divisions in
California, Texas and Florida.

Collins’ first commercial applications of Ada were
f:her-reinforced plastic corporate turbo-props, the
Beechcraft Starship 1 and Beechjet. It started program-
ming the Starship’s 375 000 lines of Adain 1984. Since
then, Collins has written a Central Maintenance Com-
puter and an Integrated Display System in Ada, both of
whichfly in the Boeing 747. Boeing’s 737,757, and 767
use Collins’ Electrical Flight Instrument System equip-
ment. InJune 1991, the Collins division began marketing
its Ada-ran GPS modules, called NavCore V, to ariginal
equipment manufacturers for around $450. Collins’
market for the 2.5" x 4" module includes manufacturers
of navigational systems for airplanes, commercial fish-
ing boats, trains, yachts, eic.

FAA'S ADVANCED
AUTOMATION SYSTEM

The largest avionics effort written in Ada is the U.S.
Federal Aviation Agency's (FAA) $12 billion effort to
modernize its air traffic congrol system. IBM Federal
Sector Division in Rockville, Md., won the contract in
1988 for developing 2.3 million lines of new code for the
Advanced Automation System (AAS) portion, which
will cost approximately $3.55 billion. About 1.8 million
lines of code will be written in Ads.

The AAS portion will support requirements for
takeoffs and landings, and will control departures and
arivals. It will monitor flights at 22 enroute control
stations, 188 terminal radar approach control facilities,
258 air traffic control towers, and more. Italso will make

suggestions for efficient routing and fuel consumption.

COMMERCIAL APPLICATIONS IN Ads

support for programming in the large especially
attractive.

The first Ada code to be flown in an ESA spacecraft
should tske place in the Infrared Solar Observatory
(1SO) satellite in May 1993. ISO is a scientific satellite
going to the Sun. The Auitude and Orbit Control
subsystem of the satellite is developed in Ada using a
1750 processor (MAS-281) from UK -based Marconi.

At present, ESA is investing heavily in prepering
future Ada technologies, such as in developing an Ada
Tasking Coprocessor (ATAC). ATAC is a VLSI chip
implementing the full Ada tasking model which can be
attached to any 16 or 32-bit microprocessor available in
the market. It takes care of all scheduling decisions.

The agency's hard real-time system studies have
led t0 the proposal of new methodologies for Hierarchi-
cal Object-Oriented Hard Real-time Systems
(HRT-HOOD). ESA was insgumental in developing
HOOD as amethod to incorporate state-of-the-art sched-
uling techniques; i.c., deadline monotonic scheduling.

Ada IN OIL EXPLORATION

Like NASA and the ESA,
Shell Oil and Dowell-

Inc. were
concerned first with writ-
ing reliable and accurate
software, and chose Ada
because of its reputation.
The oil compenies hoped
to save money by using software 1o predict the outcome
of proposed projects.

Shell initially selected Ads in 1985 because of its
software engineering festures — such as records, point-
er3, stung typing, generics, exception handling, and
multi-tasking — and because of the ineernational stan-
dard. 1t uses two Ada systems in testing ocean floors for
oil: aseismic processing sysiem, which is written almost
entirely in Ada, and a graphical user inerface, which
inciudes C and UIL. Both systems constituse a single,
larger project.

The scismic sysiom breaks long processing se-
Quences into small parts. Each part is programmed with
an Adatask, allowing for paraliel execution. The system
has been ported and successfully executed on Sun3,
Sund, Convex, VAX, RS6000, and Cray machines,
using several different compilers.

Seismic processing involves performing hundreds
of individual steps on a grest quantity of data. The

interface allows s user 10 assembie hundreds of
basch jobs and 10 decide the sequencing among them. A
multi-colored display shows their status. The system

uses Ada for the background processes (which handle
the job management functions) and the internal portion
of the actual interface. Roughly, the user imerface
consists of 217,000 lines of Ada code, and 363,000 lines
of other languages. The runtime system consists of
222,000 lines of Ada, and the operations is projected 10
be 250,000 lines of Ada. The imterface is now in
production use, driving an older signal processing sys-
tem. Users will begin testing the Ada seismic system

Dowell-Schiumberger Inc., in Tulsa, Okla., an oi
Ifield service company, has written between 150,000-
175,000 lines of Adafor simulation software since 1985.
The company's five Ads applications, which run on
MicroVax I, predict what will happen and how much
material is needed when the company provides a service
for an oil producer. The tool CemCADE (Cement
Computer-Aided Design and Evaluation), for example,
simulates the cementing of an oil well to stop oil and gas
from rising and mixing with the fresh water supply
around it. PacCADE does the same for packing gravel
around the 0il well. The company’s 200 international
locations all use the tools.

Victor Ward, section head of the CADE Product
Team in Tulsa, says Ada was originally chosen because
of its generics and because code could be easily main-
tained and reused. “Ada isn't more difficult to use than
sny other language”, he said, “once you ge1 over the start
up costs”.

Ada N THE PaciFiC

The Japmnese SIGAda, with 410 members, is ane of the
intemational special interest group’s largest chapters.
Only about 25 of the members in Japan are from academix:
the others are from Japanese corporations. The world's
largest corporation, Nippon Telegraph and Telephone
(NTT), was one of the first to commit (0 Ada by devel-
oping compilers and support tools in 1983, when the
language became a standard. By 1969, NTT had devel-
oped 2.5 million lines of Ada code. “Software
productivity and relisbility are critical 1o NTT," accord-
ing w0 Kiyoshi Tanaka, a senior research engineering
supervisor. “The Ada language promised. and has
proven 10 be in practice, a sound basis for the develop-
ment of large-scale commercial software sysiems.”

NTT hes implemented several commercially avail-
able telecommunications services in Ada: a videotext
communication sysiem, a cellular telephone service, a
smellite communications sysiem, and & datsbase man-
agoment sysiem. It has stanted developing 8 digital
collular telephone system service in Ada, using an
object-oriented design.

COMMERCIAL APPLICATIONS IN Ada

systems. The number has grown sieadily since then,
until the Clearinghouse’s October 1992 Ada Use Data-
base listed over 90 commercial applications. The
language has caught on with some small developers,
who are using it to edit videotapes in Saratoga, Calif.,
and to search documents with hypertext in Houston,
Texas. Some larger companies are testing their prod-
ucts’ reliability with Ada sofiware, such as Motorola in
Dlinois testing its cellular phone switching systems,
Trace Inc. in California testing bare circuit boards, and
Collins Avionics in lowa testing a variety of its elec-
tronic navigational systems.

For future markets, Ada compiler vendors now
have products for the hand-held computers, which shops
use to read bar-coded prices and overnight delivery
services use to route packages. Ada compilers are also
now available for digital signal processors, which oper-
ate everything from suspension systems in automobiles
to high-speed modems in PCs.

By satisfying DoD requirements, Ada was able to
appeal t0 a much larger market than its creators first
envisioned. Today, the commercial sector, which in-
cludes an estimated 24 percent of the Ada market, may
not financially support Ada vendors enough to keep
them afloat when the DoD begins cancelling projects.
Research and development contracts are often the first in
line to be cut, and many of them are being written in Ada.
As the defense industry slims down, more commercial
software developers will have o see Ada as a solution to
their cost overruns and maintenance problems in order
for the language to be viable in the next century.

ACKNOWLEDGEMENTS

We would like to thank the following people for their
generous contributions to this article: Jose-Luis
Fernandez of ISDEFE, Spain; Bjorn Kallberg, Ulf Olsson
of Nobeltech, Sweden; and Marcus Meier of UBS,
Switzeriand; and John Walker of the Ada Information

Clearinghouse in Arlington, Va.

THE AUTHORS

Ann S. Eustice is vice chair of the SIGAda Commercial
Ada Users Working Group (CAUWG). She is a writer
for ITT Research Institute, and publishes regularly in the
Ada Information Clearinghouse Newsletter.

Barry Lynch is a director of Software Professionals
Ireland in Dublin. He is a board member of Ada Europe
and an Intemational Representative on the Executive
Committee of ACM SIGAda. His special Ada interests
are in environments and public tool interfaces.

— ADA

Ada—

A Software Engineering Tool

Robert Frost once said that writing free verse was like playing tennis
with the net down. The gume under those conditions requires great self-
discipline. in computer progrumming we often play with the net down.
Ada puts up the net. adds several referees. and installs electric-eye sen-
sors on the fault line and boundaries.

As a response to a “software crisis.” the U.S. Department of
Defense (DoD)decreedin 1979, thatall new software develop-
ment should be performed using Ada. Then the DoD created
a waiver process so that nearly anyone with a good imagina-
tion could create a rationale for avoiding the transition to Ada.
The result: Adadidn"t have enough launch-pad thrust to reach
orbit. Another factor in Ada’s slow acceptance was a reluc-
tant IBM. Without the IBM endorsement, any new language
has trouble gaining acceptance. According to Aviation Week
and Technology, IBM finally put its full weight behind Ada
after its Federal Systems Division lost several million dollars
in government contracts that required Ada.

Now Ada’s popularity is increasing in velocity: intena-
tionally in Europe and Japan; academically in the university
software engineering community. The National Aeronautics
and Space Administration (NASA) has adupted Ada. The
Federal Aviation Administration has chosen Ada for the new
air traffic control system. The University of Santa Clara now
requires Ada instruction in its electrical engineering cur-
riculum. Ada is even gathering a following in the commercial
and MIS marketplace. CRI, Inc., of Santa Clara, California,
has developed a relational database product in Ada for use in
Ada systems. -

Estimate of Ada Market Potential
in U.S. Aerospace industry

1008 1987 1909 1999 1900 1901 1902
Thousands of People Developing Software

108 12 128 149 157 178 197
Percent Working on Ada Programe

ki % 12% » % 0% 0%

Thousands of People Developing Software in Ads
(T) (Y 189 Y a8 ™4 L]
investment per Person Warking on Ads Programs (in Thevsends)
10 0 90 $10 0 18 o

Ada Support Marketing Opportunity (in Miiens)
920 " NN S0 N 704 008

Agssumption: Number of solware deveopers grows 12% per year
Source: Rational, Moursain View, Caliomia

by
Richard D. Riehle

In April 1987, Undersecretary of the Army James Ambrose
declared anend to waivers and mandated that all Army projects
be developed in Ada, including MIS applications. Since then
all branches o1 the DoD have elevated their commitment to
Ada, and most of the defense contractors have gotten the mes-
sage. Ada is now alive and well—in fact, thriving—and is a
viable language alternative for any software development
project

Why do we need another programming language? And
why Ada? And what is an “Ada,” anyway? Then again, what
is all this nonsense about “software engineering™? Is that just
another fancy term for programming in the way that “sanitary
engineer” is another name for janitor? In this series of articles,
we hope to answer these and other related questions about
Ada. We'll discuss the premises on which the language was
designed and its differences from other languages, and we'll
examine the issue of fulfilled and unfulfilled expectations.

Language Characterisitics

Ada is a descendant of Algol-68 via Pascal. If you know Pas-
cal, Algol, or PL/1, you will find much that’s familiar in Ada.
However, Ada is a very formal language, and many words
and phrases take on specific, new meanings when describing
Ada concepts. Also, Ada adds new capabilities to its ancestral
languages and moves in the direction of “object-oriented
design” (OOD). But Ada is not a “pure” QOD language in the
image of Smalltalk, Objective C, or ACTOR.

Before we proceed with more detail, let’s take a look at
some of the major characteristics of the language. First a
definition. We use the word . ype a lot in Ada. A type defines
both the permitted set of values and the legal operations for
an object. Objects may be discrete data items (scalars), com-
posite data items, or entire executable modules.

Some of Ada’s more prominent features are:

multiple le.vels of abstraction

strong typing
strict scope and visibility rules

high modularity

object-oriented design

built-in exception handling

built-in concurrent/real-time processing capability
sepnnnon of specification code from implementation

* separate compilation of modules
. mumofcummoﬁoﬁwmwg

One of Ada’s unique features, generic components, enables
Ada programmers 10 build context-independent modules.

1988 Programmer’ s Journal 6.5

The Software Engineering Imperative

Without an swareness of Ada's software engineering founda-
tions, it will be hard to understand why the code sometimes
reads like the software equivalent of a Bach fugue.

During the past twenty-five years intensive scholarty re-
search into the programming has resulted in concepts
like “formal proof of correctness™ (Dijkstra), Structured
Analysis and Design (DeMarco), problem/solution space
models (Ledgard), and “information hiding”™ and “levels of
abstraction” (Parnas). There have been hundreds of other con-
tributors to this evolving discipline, and a visit to a university
bookstore will now tum up plenty of titles that include the ex-
pression “software engineering.”

Goals of Software Engineering

The designers of Ada adopted the goals of software engineer-
ing defined by Ross, Goodenough, and Irvine:

« Modifiability * Reliability

 Efficiency * Understandability

These software engineering goals are no different from the
implied goals in our day-to-day programming, but now they
are explicitly stated—almost codified.

An additional goal for Ada is “portability”: There is only
one Ada. No dialects of the language are permitted. Source
code must compile in any Ada environment. The Ada Joint
Programming Office (AJPO) of the DoD validates every Ada
compiler. An unvalidated compiler isn’t Ada. This is the first
computer language subjected to such a rigorous standard. Any
attempt to corrupt Ada will be rebuffed. She's “. . . just not
that kind of girl.”

Principles

The goals of software engineering led to a definition of un-
derlying principles. By principles, we donot mean “methods.”
A method is something like “structured analysis.” A principle
is the foundation for the method.

Since software engineering is an emerging discipline, there
is no complete agreement on all of the principles, but the prin-
ciples most commonly associated with Ada are also defined
in the work of Ross, Goodenough, and Irvine:

« Abstraction + Uniformity

+ Information hiding » Completeness
* Modularity + Confirmability
* Localization

Notice the absence in this list of Warnier-Orr, Jackson Sys-
tem Development, software metrics. object-oriented design.
These are “methods,” which would be based on the principles.

Abstraction

One of the most important principles in software engineering
is “levels of abstraction.” By abstraction we mean: Show only
the essential properties of a program without revealing the
details. There is a presumption that we can decompose an
abstraction into its ¢

Ada is expressly designed to enable multiple levels of
abstraction. We find this principle represented in Ada by pack-
ages, generic program units, distinctions between unit
specification and unit body, among abstract data types, and
betwzen private and limited-private types, and by the ability
to define entirely new types.

An example software abstraction familiar to many design-
ers is the Data Flow Diagram (DFD). The “context diagram™
represents the highest level of abstraction of the DFD. Sub-
sequent DFD levels describe subordinate levels of abstraction
until we are at the most elementary (non-decomposable) level.

Information Hiding

Information hiding is closely related to abstraction. We
simplify the use of program units by hiding unnecessary in-
formation. Information, here, is defined in a very broad sense
and includes details about algorithm implementation, data
types, and cbjects.

Information hiding is not a new principle. It has been avail-
able to us in one form or another from the earliest days of
programming. One example is the OPEN command found in
many languages. We issue the

OPEN (parml, parm)

statement and are spared the tedious effort of coding our own
device driver interface, exception handling, etc. Ada, by its

I WhelsAda?
Ada is “ahd“lnheq—

programmer.

Augusta Ada Byron, deaghter of Lord
Byroa, was born December 8, 1815, in
England. She was always addeessed by ber
middle aame Ads. When her father loft ©
carouss about the continent, Ada’s mother
Lady Byron set sbout educating Ada in
mathematics as 3 moral disciplise. Ada
continued 10 study mathematics dwough-
out her Jife,

Ada became frieads with Cherles Bab-
bege, inventor of the Difference Engine
and the Analytical Engine. An lulian en-
gineer. Luigi Menebrea, wrote & shon
paper describing the Analytical Engine,

" and one of Babbage's frionds suggostod

that Ads transisse the paper into Ehglish.

‘When Ada wnderiook the task of trans-
lating Mencbeea’s paper, she also decided
0 make a few “notes.” The nows, lsbeled
A tru G, were three times the longth of
the original paper. It is in thess notes that
mmmmh
computer history.

The “notes™ describe programming
methods far beyond whet was thes pos-
sible with the ical Engine. Ada’s
mind took a Jeap into the future. One
hundred years before Eaniac, she was
subroutines. varisbies. and GIGO (ger-
bage in. garbage owt). Ada even wuched
lightly on Antificial Intefligence. Of
course. Ada did not use Our CoMemporasy

compu‘sr argot , but the notes read almost
like one of the popular books of our dsy
that describe the possibilities of electronic

computers.

Whenin 1979, the U.S. Department of
Defense High Order Language Working
Group (HOLWG) finally decided toaccept

guege
Booch, author of Softwere .
with Ada, “Jack Cooper of the Navy
Maserial Command evolved the perfect
aame for this new isnguage: Ada"
Lk scems appropriate that an organiza-
tion as commined 0 femninist issues as the
Department of Defense should name its

new programming language in honor of 3
ninesoenth cennry woman —RDR ¢

1948 Programmer’s Journal 6 %
69

very design, expands upon and actually enforces this prin-
ciple. Inlaterdiscussions we 'll examine datatypes that provide
clegant ways to hide implementation details.

Modularity
Ada encourages program design using small, well-defined
modules. Ada programmers have standard methods for
separate compilation, data and proceaure encapsulation, the
creation of “loosely-coupled” objects. and top-down struc-
tural design.

The phrase “loosely-coupled™ is an important concept in
Ada’s rendition of object-oriented design. The loosely-
coupled object in Ada is a generic unit that can be used over
and over in many different programs independently of the
specific contexts of those programs. In fact, building generic
*“reusable components” is a key feature of Ada.

An example of loose-coupling in the real world is in your
automobile. You can't take the carburetor from your Chevy
and put it on my Ford. The carburetor and the engine are tight-
ly-coupled objects. On the other hand, your twelve-volt bat-
tery is a loosely-coupled object that I can steal from your
Chevy and use in my Ford.

This leads us to the concept of “software ICs.” Many in-
tegrated circuits are loosely-coupled. Often, an electrical en-
gineermay select generic ICs (objects) froma catalogtocreate
a unique hardware design. Object-oriented design strives to
develop reusable software units, or components, as generic
as those integrated circuits!

Localization

Localization is almost the inverse of modularity. But localiza-
tion stresses the cohesiveness of the objects in a module. This
tends o make individual modules small, logically concise,
and easy to modify. We see here that much of Ada’s design
relates to the modifiability goal. Small, loosely-coupled, high-
ly-cohesive modules are easier to modify and maintain. They
are also easier to create.

Ada permits an encapsulated rype that can be affected only
by the operations defined within the scope of a package. This
isachieved viaprivate and limited-private data types. Theend
result is “abstract data types.”

Uniformity

Wecouldalsouseﬂlewordcmsnsuemy Every programming
organization has its standards. Some use indentation on the
line after the { w..ile others insist on data name normalization
and still others are totally laissez faire. Often, “correct” coding
style is subje ct to argument. The principle of uniformity is
related w the goals of modifiability and understandability. The

Ada enthusiasts who insist that Ada’s structure and environ-
ment can help.

Confirmability

By confirmability, we mean some method of determining that
our program is correct. Edsgar Dijksira's “formal proof of cor-
rectness™ for software would be ideal here. Unfortunately,
neither Ada nor any other language advances s to that level
of confirmability.

Ada’s modularity enables us to separately compile and test
program components. In addition, strong data typing provides
tools to enforce confirmability. As astongly “typed” language,
Ada encourages design that includes defining new, rigorous-
ly constrained data types. And Ada’s built-in exception han-
dling permits us to implement our own error and exception
routines.

Software Engineering Beyond Ada

No language can provide, by itself, all the tools necessary for
fulfilling the goals and principles of software engineering.
But Ada is more than a language. Compiler developers are
also supplying the Ada Programming Support Environment
(APSE). In future articles we'll explore different implemen-
tations of APSE.

Other elements of software engineering are also neces-
sary—project management tools, structured methods (analy-
sis, design, walkthroughs), prototyping, quality assurance,
Computer Assisted Software Engineering (CASE) tools, and
software metrics.

The Ada Language

Now that we have reviewed some of Ada’s underlying goals
and principles, we can look at the language itself. In keeping
with the principles of software engineering, we start at the
highest level of abstraction, the package.

The package is unique to Ada. We can find concepts in
other languages that roughly correspond to the Ada package
but nothing that is as complete. By a package we mean a col-
lection of logically related objects. This collection can be data,
datartypes, related subprograms, and type declarations. A pack-
age consists of two parts: the package specification and the
package body.

The user of a package usually has no need to see the details
of the implementation (package body). The only part of a
package the programmer would see is the package specifica-
tion. The specification is the programmer’s window into the
package. N

There are software companies that specialize in creating
both generic and non-generic Ada packages. This is a grow-

idea, of course, is to keep the style the same. -

Ada supports uniformity by virtue of its rigorous structure. Ada Reserved Worde
Ada programmers build software systems as small, well- abon declare pmaric of salect
defined modules (Ada packages). The implementation coding abe ::7 o o :
style of a particular package may be peculiar, but the pack- —— dgm out
age user never sees the algorithmic code. All access 1o the o d, » task
package is through the package specification, and that sub- | =4 o ' b N e :."
stantially limits the vasiations of style available wthepack- | 7 .. v - T 098
age developer. Even here Adadoesn’tlet us play withthenet | - ... i leied ' peosdww.. . .
h'n. *~ » -7 "a ” "‘.\vS._ - <
Completencss iy e o e wm
How can we know our solution is ? No - on wik
ming language alone can ghake this happen, but there are those case tor - oongnd vl

constut fmcios =il mverss .
1988 Programmer's Journal 6.5

el

Why Do We Need
a New Language’

In his book on Software Engineenng,
Henry Ledgard descnbes what sets the
professional apart from the amateur
programmer: The completed work of a
professional must be reliably usable and
maintainable by someone other than the
author. Moreover, the professional typical-

ly develops softw: - *at will interact with
a large body of ¢ “ftware written by
other professions

There are ot. 5. Professional
programmers and ;.. 1ing managers
know that the vast may. . ; of ime in any

software organization is devoted to main-
tenance of existing code. In the Depart-
ment of Defense it is estimated that 80%
of the software doilar goes into main-
tenance. Not only is this a thankiess task,
but it also propagates new bugs. Addition-
ally, because there is no “science” of pro-
gramuming, each coder does things differ-
ently. Anempts at discipline over the years
have been dismally unsuccessful. Imagine
maintaining the code for all the systems of
lheDoD(otnygovmnwy)md

tenance of the sysiems programuned with
these languayges was becoming 3 rught-
mare. and the very computer soliware that
was being implemented tor the defense of
the counay was becoming part of the
threat

When a government agency has a
problem, the first thing it does is establish
a committee. In this case the committee,
formed in 1975, was named the High Order
Language Working Group (HOLWG) and
consisted of both defense and civilian
members. HOLWG developed criteria for
the “ideal” DoD language and surveyed
the languages then available. HOLWG
decided that none of the languages was
consistent with DoD requirements.

In 1977, HOLWG issued a request for
proposal for a new computer language. It
received 15 and selected four
finalists labeled Red, Green, Blue, and Yei-
low. In the next round of refinements, the
Red and Green languages were selected.
Finally, in 1979, the Green language, sub-
mitted by a team at Cii-Honeywell/Bull of
France, was sclected. The team was
headed by Dr. Jean D. Ichbiah.

Ada was designed aceotdmg to current
concepts of software engineering. Some

puters (RISCs) unstead of Complex In-
strucion Set Computers (CISCs).

The jury w sull ouz un the eventual tate
of Ada. At present it seems (o be healthy
and gaining strength. Just a few years ago.
many people had their doubts. According
to a bulletin released by the Ada Joint
Programming Office (AJPO) in December
1987, there are now over 120 compilers
available for the language. Moreover, or-
ganizations that have adopsed Ada and im-
plement its “reusability™ features report
dramatic improvements in programming
productivity.

There is hardly a2 mainframe or mini-
computer environment for which there is
00 compiler. As you might expect, there
are outsianding Ada compilers for the DEC
VAX series. Strangely, though, the system
best designed 10 take advantage of Ada’s
tasking feature, the Cray series, does not
yet have a “validsted” compiler. By “vali-
dated” we mean that the compiler has suc-
cessfully compiled and execused the 1,850
programs contained in the ATPO test suite.
And the rule is, until it is validsted by the
AJPO it isn't Ada. Recent estimans are
that there will be about 150 validated Ada
compilers by Summer of 1988.

military command and control system or say it is the first language to be developed There are some good impiementations
two bundred logistics sysiems. that way. It is, however, not withoat its of Ada for the IBM/Clone PC environ-

There is al2o the oid issue of re-invent- critics. Many software engincers believe ment. Fora low-cost Ada ryRR
ing the wheel. Most of the code we crease that & better language that i the Software, Inc.'s JANUS/Ada (C-PAK
@a&uﬁumoﬂne&m— principles is Modula-2, developed by the mmsm) Recently, Meridian
wen by someone eise. linle author of Pascal Niklaus Wirth. Some ssy Software introduced a pre-validased ver

inal software is coded. The ideal is 0 that Ada is the last great language of the sion of Ada for the Macintosh. Meridian
make code as re-usable, generic, aad sim- 1960s and point to the emergence of 4GL. and Alsys also have validated compilers
ple as paperclipe. This is anon-trivialprob- (Fourth Geaeration) sechnol- for MS-DOS environments—RDR ¢
lem in a small organization like your ogy. Still others dislike the “size” of the
homesown bank; cortainly non-trivial in an comparing it to the current trend
ocmmﬂnsiuofdnbob towards Reduced Instruction Set Com-

Now imagine the cast of all this
duplication, efror maintenance, and Microco

oversight kt’s enough © make - ‘ﬁ“'.cof“"m"'o.' Tpu ers

any self-respecting general want o give up Thui;!;tofMacompglenun comprehensive, nor should its entries be construed as
nuciear wespons and retum 10 clubs and specific recommendations.
stones. Validsted Eaviroameat

Ada is designed for professional Janus/Ada RR Software, Yes PC/Clone

3 The Madison, W1

typical Ada project is very large, consists -
of mamy v by | AVoos Medme (o SCes L cos
faniticssly refisble. The system is usually Yes Z-8000
constructed by a team of programmers Al Al v
working imm Inc. es PC/Clone,
e‘hm_w~Mm~ v Wlly;l'm.m Yes Macintosh (under AUX)
ly with all the other modeles. Professor Yo pole 60000 faasly
Phil Schrods of Nordywesters University Soon osn
has stased a rule of thumidc “No good e v rom
program can be writtea by more then en Ads-86 Softech, Inc. es
poopis. The best programs are writtem by Walthar, MA IN‘I'EB%
ons or two peop!~ " Ada presumes ©
repeal Profeesos Schrodt’s ruls of umb. NYUAdWEd New York University

It became clear in ths It 1960s that
hwﬂhl‘nﬁ'-ﬂ”lyz mwuamﬁﬁ.“k.m h-:.mmm
easly 1970 the Do wes using over However, you can” $ suicable program-

Ade/Ed will execuee most of the in the book by (soe the dibliog-
different programeming lenguages. Main- %)‘um“h. mm""
1988 Programmer' s Journal 6.5

72

ing business. but there is still 3 need (and 2 marketplace) for
botaer packages.

Here is a skeieton package that incorporates other pack-
ages. Noee that Ada comments are preceded by two hyphens
(-

with OPERATIONS RESZARCH:
pacxage lox_:n_scnmm 18
cype STATUS TYPE i3 (FULL., DeTY);
type SERIAL NO L3 new (NTEGER; -~ derived dats type
00X _CAR_STATUS : STATUS_TYPL: -~ assign & dats type
80X _CAR i SERIAL_MO: -+ asaign & daca type
tunccion SOX _CAR_[S(BOX _CAR :in SERIAL_NO) cecurn

== baqin package spec:ficaction

«= defined dats type

STATUS _TYPE:
proceduce PLACE _BOX_CAR(PARML: PANNZ: PARMI. . .) :

oend 80X CAR_SCHEDULER: -= end package specif.cation
-= DEQiIN Lmplemencation

“= a.qoc.ihms

-~ ate un this part
-+ end \mplementat.on

paczage boay BOX_CAR_SCHEDULER
end nx_cil_scmum:

In this example we are creating a package to solve the clas-
sic problem of moving *mpty and full box cars in a railroad
network. The package will use another package. OPERA-
TIONS_RESEARCH. which is incorporated into this pack-
age by the Ada with statement; then we define two data types,
STATUS_TYPE and SERIAL_NO, and create two varniables
and assign a type o each; then we specify the functions and
procedures that will be found in the body of the package. The
most important thing to observe here is that the package
specification may be the only thing available to anyone who
wants to use the package BOX_CAR_SCHEDULER. The
package body may be hidden. With this specification, another
programmer can create a new program unit (package, proce-
dure. or function). For example:

wAth TRACE MANAGDMEWT:

with PERSOMNEL;

with CHGINE WMAMAGEDIEWT;

with 80X_CAR_SCHEDULER:
pochage RAILAOAD MARAGDINENT is

ond nx:.nin_m: == end packaqe specificacion

The package body of BOX_CAR-SCHEDULER and other

are hidden from the writing the pack-
age. RAILROAD_MANAGEMENT. And the package body
for OPERATIONS_RESEARCH was hidden from the creator
of BOX_CAR_SCHEDULER.

Subprograms .
Ads has two kinds of subprograms: procedures and functions.
The difference between the two is quite simpie. A function
retams a resaitas partof an expression. A procedure is a simple
stasement; for example, a simple procedure to convert non-
metric to metric:
vith TEXT_10s
precesure METRIC is
INCRES, FEEY. YARDS : (NTRGER:
METRRS : FLOAT: .
T TSN o st 1
_TOTAL 2 LNCEGER;
e _IETRIC 1 PLOAT;
CONVERSION_FACTOR : ceastaat FLOAT := 0.02340

INCH_TOPAL := (YDS * J6) « (PP ° 12) « IN:
NEW_METRIC := FLOAT(INCH_TOTAL) ° COM-
VERSION_FACTOR:
- WOt .a the Geavecsien of (NTRGER cype te
=« FLOAT type using FLOAT (INCE_TOTAL)
retusn NEW_METRIC:
ond NETER_COWV:

bogin
tWT_10.GET (YARO®) ;
rr_10.GET(FRRTY s
IWT_10.GET{LNCHES) ;
@ NETER_CONV{ INCNES, FEET, YARDS) ;
- ong METRIC)

Here we have a tunction call withun a procedure. (n additvon.
we have 4 procedure call. GET. from INT_IO.

[Hustrations like this often elicit a ho-hum response trom
expenenced programmers. There s nothing here that coukdn 't
be done in some uther language. The direcuve with s some-
what equivalent to C's #include or Pascal’s {$1...). but there
are some advantages in clanty. For example, the value 1o be
retumed in an Ada function is always explicitly retumed. Also,
we do an explicit type conversion on INCH_TOTAL in the
expression that computes CONVERSION.,

The first thing we see in this procedure is the invocation
of ancther package, TEXT_IO. Ada doesn’t have its own
input/output procedures, so input and output are controlled
by Ada packages. Several packages are provided as pant of
the standard language implementation: SEQUENTIAL_IO,
DIRECT_IO, TEXT_IO, and LOW_LEVEL _lO. Other _IO
packages are available from Ada software vendors and the
AJPO. These include console, screen, and window handling
packages, graphics packages, and packages for device drivers.

Since we want to enter integer numbers via a keyboard,
we need to use the package TEXT_IO, which contains three
generic packages named INTEGER_IO, FLOAT_IO, and
FIXED_IO.

An Ada generic does not exist as an executable entity. It is
often referred to as a “template.” To use any generic object
(package, procedure, or function), you must supply the charac-
teristics of the objects to be processed and create a newly
named version of the generic object. This is called inssansio-
tion, meaning to create a new “instance” of the generic ob-
ject In Ada the parameser(s) for a generic may be a typs, a
varisble, or even another subprogram.

INTEGER _O. as a genenc package within TEXT_IO. al-

lows us 10 send and receive numbers fromyto adevice in ASCII
tormas. INTEGER _[O automaticaily converts the numbers to
the proper internal INTEGER format so that we can perform
calculations. The generic does not exist as a working pack-
age until we instantiate it. [n this case we instantiated IN-
TEGER-IO as a new package named INT_IO for data type
INTEGER.

This may seem a little redundant, but suppose we had real-
ly wanted to constrain the GET for each object in the proce-
dure. We might have created the following new data types:

type INCH_TYPE is cange 1..12:

type YARD_TYPE is range 1..144:
type FEET_TYPE 18 cange 1..);

then created objects of those types,
INCHES : INCH_TYPE;
reeY : FERY_TYPE

YARDS : YARD_TYPE:

and then instantiated INTEGER _IO for each type

package INCH_IO is new TEXT_IO.INTEGER_IO(INCH_TYPS);
package FERT 10 is new TEXT_10.1WTEGER_IO(FEET_TYPE);
package YTARD_IO {s new TEXT_IO.INTEGER IO(YARD_TYPE):

Now our procedural coding would read:

INCH_10.GET (INCRES)
FEETY_I0.GET(FEET))
YARD_I0.GET{XANDS);

1988 Programmer’s Jowrnal 6.5

P

If the newly instantiated package, INCH_IO, receives input
outside the range of | through 12, a constraint error will be
raised at runtime. This is one reason Ada code sometimes
seems a little baroque.

Some relief is available in the form of the use option. Rather
thanexplicitly name TEXT_lO asthe parentof INTEGER 10O,
we couid have said,

with TEXT_I0: use TEXY_I0:

package INT_IO 13 new INTEGERN_ID(INTEGER);
use INT_10:

GET(INCHES)

Many Ada programming shops prohibit or discourage the
use option because of the need for absolute clarity and con-
trol over the visibility and scope of every element of the
program. This may be of little consequence in a small software
product but becomes a major issue in a large software system
designed to control parallei processing in a “mission critical”™
environment.

Tasks
One unique feature of Ada is the task, a program unit devoted
1o concurrent processing. The task may be used in either a
multiprogramming or multiprocessing environment. The task
has no direct analogue in other languages. Historically, we
resort to assembler language or some special purpose lan-
guage we access via CALL constructs to match Ada’s task.
The task becomes an especially important programming
construct as supercomputing and parallel processing emerge.
With Ada we can design a system in which we launch twen-

ty (not a limit) parallel tasks, all of which can communicate
with each other. Tasks can be used with great efficiency in
cornplex simulation programs where it is often convenient to
break a problem into small pieces and merge results at dif-
ferent stages of completion.
The overall structure of a task is similar to that of a pack-
age:
task PACEMAKER @3
. -~ Specification for a tass
== 1. an emdDedded system that

. -- controls & heart pacemaker
end PACEMAKER;

“asx doay PACEMAKER i3
. -= Algoriihmic implemenistion
-- is placed here

end PAZEMAKER:

An important aspect of Ada is the ease with which we can
create programs for “embedded systems,” by which we mean
software systems consisting of multiple programs and/or
processors that operate independently of any human inter-
ference. Examples would be radar guidance systems, missile
telemetry, automated medical monitoring and control devices,
unmanned space vehicies, etc. Reliability is the most impor-
tant attribute of these kinds of systems.

Ada’s charter to be the language of embedded systems is
one reason for the rigorous discipline it enforces on the
software engineer.

We can create multiple tasks that rendezvous with each
other in a variety of ways. There are methods for prioritizing,
starting, stopping, and monitoring tasks. One task may stant
several others and wait until one of those others completes

